
Transfer Learning for Adaptive Relation Extraction

Principal Investigators:
Hai Leong Chieu; DSO National Laboratories

Wee Sun Lee; National University of Singapore
Jing Jiang; Singapore Management University

September 13, 2011

Abstract
This project addresses the relation extraction problem in resource-poor domains. The relation

extraction problem is the problem of extracting information regarding relationships between enti-
ties (e.g. individuals, organizations). This involves extracting the text spans specifying the entities
involved and classifying the relationship between these entities into one of several pre-defined
classes (e.g. person-organization affiliation). The primary technique for solving such problems
is machine learning: given a set of examples of text and the extracted information, a machine-
learning algorithm learns a statistical model that can be used to extract information from new text.
An obstacle to the widespread application of machine-learning methods is the necessity for rela-
tively large amounts of annotated training data: while free text are abundantly available, it is costly
to employ humans to annotate the free text with information that should be extracted from it. The
focus of this project is to research into technologies that could enable relation extraction systems
to be quickly adapted to resource-poor domains. We apply (1) transfer learning approaches for
transferring the models learned in one domain to new domains, and (2) structured learning ap-
proaches that could remove the need for powerful pre-processing modules (e.g. parsers, named
entity recognizers) that may not be available in resource-poor domains.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 SEP 2011

2. REPORT TYPE
Final

3. DATES COVERED
 14-07-2009 to 14-07-2011

4. TITLE AND SUBTITLE
Transfer Learning for Adaptive Relation Extraction

5a. CONTRACT NUMBER
FA23860914123

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Hai Leong Chieu; Wee Sun Lee; Jing Jiang

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
DSO National Laboratories,118230,20 Science Park
Drive,Singapore,NA,NA

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD, UNIT 45002, APO, AP, 96338-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-094123

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project addressed the relation extraction problem in resource-poor domains. This problem is one of
extracting information regarding relationships between entities, which involves extracting text spans
specifying the entities involved and classifying the relationship between these entities into one of several
pre-defined classes. The primary technique for solving such problems is machine learning. An obstacle to
the widespread application of machine-learning methods is the necessity for relatively large amounts of
annotated training data: while free text is abundantly available, it is costly to employ humans to annotate
the free text with information that should be extracted from it. The focus of this project was research into
technologies that could enable relation extraction systems to be quickly adapted to resource-poor domains.
We applied (1) transfer learning approaches for transferring the models learned in one domain to new
domains, and (2) structured learning approaches that could remove the need for powerful pre-processing
modules (e.g. parsers, named entity recognizers) that may not be available in resource-poor domains.

15. SUBJECT TERMS
Transfer learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

56

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents
1 Executive Summary 4

1.1 Introduction . 4
1.2 Cross-domain transfer learning . 4
1.3 Cross-type transfer learning . 4
1.4 Extraction of relation descriptors . 5
1.5 Relation argument detection in resource-poor domains 5
1.6 Publications . 5

2 SMU Technical Report: Transfer Learning for Adaptive Relation Extraction 6
2.1 Research Team . 6
2.2 Introduction . 6
2.3 Cross-Domain Relation Extraction . 7

2.3.1 Problem definition . 7
2.3.2 Domain Similarity Measures . 8
2.3.3 Evaluation . 9
2.3.4 Multitask Relation Extraction with Domain Similarity Measures 10

2.4 Cross-Type Relation Extraction . 12
2.4.1 Problem definition . 12
2.4.2 A General MTL Framework . 12
2.4.3 Experiment . 17

2.5 Extraction of Relation Descriptors . 21
2.5.1 Problem definition . 21
2.5.2 Related Work . 22
2.5.3 Method . 23
2.5.4 Features . 25
2.5.5 Experiments . 26

2.6 Conclusions . 30

3 NUS Technical Report: Relation extraction in resource-poor domains 32
3.1 Research Team . 32
3.2 Introduction . 32
3.3 A Simplified Case . 33

3.3.1 Relation Extraction as Sequence Labeling 33
3.3.2 Conditional Random Fields . 34
3.3.3 Models . 34
3.3.4 Datasets . 36
3.3.5 Results and Discussions . 37

3.4 Exploiting Tree Structures . 39
3.4.1 Motivation . 39
3.4.2 Model . 39
3.4.3 Variants . 40

2

3.5 Exploiting Long-range Dependencies . 41
3.5.1 Motivation . 41
3.5.2 Model . 41

3.6 Experiments . 42
3.6.1 Tree Structures . 42
3.6.2 High-order Semi-Markov Features . 43
3.6.3 A Combined Model . 44

3.7 Conclusion . 45

Appendices 47

A Algorithms for the Tree Model 47
A.1 Training . 47

A.1.1 Matrix Tree Theorem and Consequences 47
A.1.2 Computing Regularized Log-likelihood 50
A.1.3 Computing Gradient . 50

A.2 Decoding . 51

B Algorithms for High-order Semi-Markov CRF 51
B.1 Notations . 51
B.2 Training . 51

B.2.1 Partition Function . 51
B.2.2 Expected Feature Sum . 52

B.3 Inference . 52

3

1 Executive Summary

1.1 Introduction
DARPA funded the DSO National Laboratories (DSO) over 2 years for the project “Transfer Learn-
ing for Adaptive Relation Extraction”. DSO awarded subcontracts to the National University of
Singapore (NUS) and the Singapore Management University (SMU) to support the project. DSO
also engaged Prof. Leslie Pack Kaelbling from the Massachusetts Institute of Technology (MIT)
as a consultant. The objective of this project is to extract relationships between entities, focusing
on the research of technologies that would enable the rapid development of adaptive relation ex-
traction systems in resource-poor domains. In Chapter 2 and 3, we provide the technical reports of
the work done in collaboration with SMU and with NUS respectively. In the rest of this chapter,
we summarize the main achievements.

1.2 Cross-domain transfer learning
The performance of cross-domain transfer learning is deeply related to the similarity between the
source and the target domains. We investigated three different measures of domain similarity
based on word distribution, language models, and kernels defined on lexicalized parse trees. In
Section 2.3, we study how domain similarity between source and target domains is related to the
degradation in performance of a system trained on the source domain and tested on a target domain.
Using the six genres provided in the ACE 2005 data set as domains, we showed that the ranking
of the source domains by cross-domain performance is positively correlated with the ranking of
the source domains by their similarity with the target domain. We found that a lexicalized tree
kernel-based measure was the most effective in finding good source domains. We attempted to
use the matrix of similarity values between domains in a multi-task regularization framework,
but experimental results show that while this could improve performance for some domains when
training data is small, it often fails to beat the baseline of simply pooling the training data from all
domains.

1.3 Cross-type transfer learning
We studied the application of multi-task learning approaches to the problem of cross-type relation
extraction. Cross-type relation extraction is the problem where a specific target relation type (e.g.
person-organization affiliation relations) is defined but we do not have enough training data for
this target type. On the other hand we do have labeled instances for one or a number of other
source relation types. The goal is to leverage the training data for the source types for extraction
of relation instances of the target type.

In our multi-task learning framework, we assume that there is a low-dimensional feature space
which is common across tasks. We build on our previous work of applying a feature selection
approach as part of a multi-task learning objective function [16]. In Section 2.4, we generalized
this approach to search for a low dimensional feature projection, and the experiments on ACE04

4

data showed that multi-task models improve the performance over the baselines of learning each
task separately, or simply learning all tasks together.

1.4 Extraction of relation descriptors
Relation extraction tasks (such as the tasks defined in ACE) are often defined as extracting the
arguments involved in a relation (e.g. person and organization in an affiliation relation). In some
cases, users may desire a more specific relation description in the sentence stating the relationship
(e.g. the post of the person in the organization). We investigated this problem under a supervised
sentence segmentation framework, and we found that standard linear-chain conditional random
fields (CRF) model have some potential limitations for this task. We proposed a modified CRF
structure that reduces the space of possible label sequences and introduces long-range features.
We annotated two data sets to evaluate our methods. In [20] we show that the modified CRF model
can perform significantly better than standard linear-chain CRF on two data sets that we collected.

1.5 Relation argument detection in resource-poor domains
Most relation extraction work relies on pre-processing modules such as dependency parsers and
named entity recognizers. We address the relation extraction problem without assuming any pre-
processing tool. We studied the use of long range dependencies within sentences via high-order
semi-Markov conditional random fields [24] and latent tree structures (see Section 3.4). Tradi-
tional relation extraction approaches gathers argument pairs using mention detection modules, and
classify such pairs to belong to a relation type or not. We show in Section 3.6 that combining
the argument-pairs detected with CRF, semi-Markov CRF and a latent tree approach outperforms
simply using a mention detection module trained on the ACE 2005 data set.

1.6 Publications
Under this project, we published [20] and [24].

5

2 SMU Technical Report: Transfer Learning for Adaptive Re-
lation Extraction

2.1 Research Team
The research work in this chapter is performed mainly in SMU. The SMU research team consists
of Asst. Prof. Jing Jiang (PI) and Yaliang Li (research engineer). Part of the work reported here
was done previously by Dr. Zhisheng Li (postdoctoral research fellow) and Xin Zhao (visiting
PhD student). The DSO team consists of Dr. Hai Leong Chieu and Dr. Kian Ming A. Chai.

2.2 Introduction
Information Extraction (IE) is a task in natural language processing whose goal is to automatically
extract structured information such as entities and their relations from unstructured text documents.
One of the most important subtasks of IE is relation extraction, which identifies semantic relations
between entities. For example, the sentence “Larry Page is the CEO of Google” contains the em-
ployment relation between the person entity “Larry Page” and the organization entity “Google”.
While the entity recognition task helps us find entities from documents (answer the “WHO” ques-
tion), the relation extraction task detects semantic relationships between these entities (answer the
“WHAT” question).

State-of-the-art solutions to relation extraction mostly rely on supervised learning [36, 39, 38,
5, 17, 26]. Typically a set of relation types are defined and all instances of these pre-defined
relation types are identified and labeled within a corpus. This annotated corpus can then be used
for training relation extraction models. Like many other NLP tasks, however, supervised learning
approach fails when there is not a sufficient amount of labeled data for training, which is often the
case when we need to extract relations from new domains or of new types.

The goal of the T-REX (Transfer learning for Relation EXtraction) project is therefore to de-
velop relation extraction methods that can easily and quickly adapt to new domains and/or new
relation types by leveraging existing training data from some old domain(s) and/or relation type(s).
From a learning point of view, this adaptation problem is closely related to transfer learning, which
has recently attracted much attention in the machine learning community [25]. In this project, we
aim to apply and extend existing transfer learning techniques for relation extraction.

In this final report of the T-REX project, we present our exploration in the following three
directions:

• Cross-domain Relation Extraction: We first present our study on cross-domain relation
extraction in Section 2.3. In order to perform cross-domain relation extraction, we study
a number of domain similarity measures designed for relation extraction. We check the
correlations between these domain similarity measures and cross-domain relation extraction
performance in order to evaluate the effectiveness of these domain similarity measures. We
then use them to regularize the model parameters in a multi-task learning framework.

6

Domain #Files #Words #Positive #Negative #Sum
Instances Instances

NW (newswire) 81 33,459 1,551 41309 42860
BN (broadcast news) 217 52,444 1,734 41422 43156
BC (broadcast conversation) 52 33,874 1,175 28749 29924
WL (weblog) 114 35,529 650 26336 26986
UN (usenet newsgroups) 37 26,371 544 18042 18586
CTS (telephone speech) 34 34,868 503 28185 28688

Table 1: Some statistics of the 6 domains in the ACE 2005 dataset.

• Cross-type Relation Extraction: Next, we study cross-type relation extraction in Sec-
tion 2.4. We observe that different relation types often share some similar syntactic patterns,
which leads to the idea of apply multi-task learning for cross-type relation extraction where
extraction of each relation type is considered a separate task and extraction of different rela-
tion types are considered related tasks. We compare two multi-task learning methods applied
to cross-type relation extraction.

• Extraction of Relation Descriptors: Finally we study a new relation extraction problem
which extracts a specific relation descriptor for a general relation type from a detected rela-
tion instance. This study is presented in Section 2.5.

2.3 Cross-Domain Relation Extraction
2.3.1 Problem definition

While an increasing amount of work focuses on designing domain adaptation methods, an impor-
tant subproblem is how to measure domain similarities. Such similarity measures can help (1)
choose a suitable source domain among many for transfer to a target domain, (2) provide a prior
expectation on whether transfer will be effective, and (3) set certain parameters in some domain
adaptation, transfer learning or multitask learning methods.

Supervised relation extraction has been extensively studied, especially on the ACE benchmark
data sets [12, 39, 5, 37, 23]. However, not much attention is given to the setting when training and
test domains differ. We use the ACE 2005 dataset [34] to illustrate the problem. The ACE 2005
dataset contains 6 different domains, including newswire and broadcast news transcripts. Some
statistics of the data are shown in Table 1. We use a feature-based supervised approach, where the
feature set includes standard features such as words, POS tags, entity types, dependency relations
and conjunctions of them. To make fair comparison, we use the same number (9,000) of relation
instances from each domain for training. Table 2 highlights that the matching source (training)
and target (test) domains give the best performance while non-matching source and target domains
lead to substantial decrease in performance.

We see on close examination of Table 2 that some source domains give better performance than
others given a target domain. For example, BN is the best source domain for the target domain

7

Target
Source NW BN BC WL UN CTS

NW 0.516 0.469 0.406 0.404 0.406 0.292
BN 0.462 0.529 0.453 0.421 0.442 0.412
BC 0.382 0.486 0.525 0.383 0.430 0.458
WL 0.386 0.462 0.402 0.445 0.417 0.336
UN 0.413 0.458 0.442 0.388 0.534 0.419

CTS 0.268 0.272 0.290 0.281 0.327 0.555

Table 2: Average F1 over different relation types in the same-domain and cross-domain settings.

NW. This phenomenon begs the question: can we predict the source domain that can give the best
relation extraction performance for a given target domain? Moreover, can the prediction be made
without any labeled data from the target domain?

2.3.2 Domain Similarity Measures

We believe that effective domain similarity measures are task-specific. For relation extraction, we
observe that there are several factors that may cause performance drop across domains, including
the usage of words, entities and sentence patterns.

Word Distribution The major language difference between two domains is arguably the dif-
ference between word distributions. We can represent a domain by a unigram language model
estimated from a representative corpus from that domain and measure domain similarity through
some usual metric such as cosine similarity or KL-divergence. Indeed, this is one of the features
considered in [22] for domain adaptation for parsing. Following their work, we define our first
measure, WD, to be the cosine similarity between the frequency-weighted vectors containing the
most frequent K words in each domain. We also consider a variation of WD called NS-WD where
we include only non-stopwords because we suspect the usage of stopwords is not very relevant to
relation extraction.

Our experience with relation extraction on the ACE 2005 data shows that the argument entities
often provide important clues for classifying their relations. For example, in “Vatican spokesman,”
the argument word “spokesman” is indicative of the employment relation. We suspect that if two
domains have more overlapping entity words then it is easier to perform cross-domain relation
extraction. So the third measure we consider is the cosine similarity between the vectors containing
only the top-K entity words in each domain, which we call ENT.

Language Models Intuitively relation extraction relies largely on sentence patterns. In order
to capture the difference in sentence patterns across domains, a relatively simple way is to con-
sider larger language units such as bigrams and trigrams rather than single words. We can train
a language model on the source domain and test its prediction power on the target domain using

8

Target
Source NW BN BC WL UN CTS

NW 0.1183 0.1089 0.1072 0.1121 0.1073 0.0864
BN 0.1089 0.1219 0.1153 0.1133 0.1131 0.0975
BC 0.1072 0.1153 0.1190 0.1129 0.1143 0.1078
WL 0.1121 0.1132 0.1129 0.1161 0.1132 0.0983
UN 0.1073 0.1131 0.1143 0.1132 0.1158 0.1067

CTS 0.0864 0.0975 0.1078 0.0983 0.1067 0.1361

Table 3: L-TK similarity for each pair of domains.

perplexity. Presumably the larger the perplexity the more different the two domains are. Us-
ing the SRILM toolkit1, we experimented with bigram and trigram language models with different
smoothing techniques and settled with tigram language models and modified Kneser-Ney discount-
ing method [8]. We call this measure LM.

Tree Kernels Sentence patterns can be better captured by parse trees. Recent studies have
shown that convolution tree kernels [10] can be effectively used in supervised relation extrac-
tion to achieve the state-of-the-art performance [37, 23]. Given the parse trees of two sentences,
T1 and T2, The tree kernel K(T1, T2) roughly represents the number of common subtrees shared
by T1 and T2. We define our tree kernel-based domain similarity measure to be the average tree
kernel value over all pairs of sentences in two domains. We consider two variations: L-TK uses
lexicalized parse trees while U-TK uses unlexicalized parse trees. We use the SVM-LIGHT-TK
toolkit to compute tree kernels2. We show the similarity of L-TK in Table 3.

2.3.3 Evaluation

There has not been much work on how to compare domain similarity measures. [22] proposed
some domain similarity measures for parsing but did not compare them. Rather, they used them
as features in a regression task to predict the cross-domain accuracy. [33] used Pearson product-
moment correlation between the similarity metric and the cross-domain accuracy to compare dif-
ferent metrics. We choose a slightly different approach than [33] because we think the cross-
domain performance measures may not be linearly correlated with a good domain similarity mea-
sure. We believe that as long as a domain similarity measure can correctly rank the potential source
domains based on how well they transfer to the target domain, it is a good similarity measure. We
therefore use the following approach: Given a target domain, we rank the source domains by the
cross-domain performance and the domain similarity measure respectively to obtain two ranked
lists. We then compute the Spearman’s rank correlation between the two ranked lists. We show
the correlation coefficients in Table 4. For WD, NS-WD and ENT, we experimented with different
values of K and used the best value of 50 in the end. We can see that both WD and L-TK are

1http://www.speech.sri.com/projects/srilm/
2http://disi.unitn.it/moschitti/TK1.0-software/Tree-Kernel.htm

9

Target Correlation Coefficients
Domain WD NS-WD ENT LM L-TK U-TK

NW 0.7 0.1 0.6 0.6 0.7 0.1
BN 0.7 0.6 0.3 0.7 0.7 0.3
BC 0.7 0.7 0.7 0.7 0.7 0.1
WL 0.5 0.2 -0.3 0.5 0.7 0.5
UN 0.7 0.6 -0.1 0.7 0.7 0.3
CTS 0.9 0.1 0.3 0.7 0.9 0.2
Avg. 0.7 0.38 0.25 0.65 0.73 0.25

Table 4: Spearman’s rank correlation coefficients for different domain similarity measures.

effective, with L-TK slightly better. LM is also a reasonable measure but not as good. It suggests
that lexical usage alone provides a good measure of domain similarity for relation extraction, but
sentence patterns as captured in parse trees can further improve the similarity measure. Contrary
to our hypotheses, excluding stopwords (NW-WD) or including only entity words (ENT) does not
help.

2.3.4 Multitask Relation Extraction with Domain Similarity Measures

A straightforward usage of domain similarity measures is to predict which source domain is the
best given a target domain. Here we consider another usage, which is to incorporate such measures
into a multitask learning framework.

The framework we consider is based on logistic regression. Supervised relation extraction is
often treated as a multiclass classification problem where the class labels are the different relation
types plus a special label for no relations. Let x be a feature vector representing a relation instance.
Let y ∈ Y be a class label. We model p(y|x) with |Y| weight vectors wy in the following way:

p(y|x;w) =
exp(wT

y x)∑
y′∈Y exp(wT

y′x)
.

Here wT
y is the transpose of wy and wT

y x is the dot product of wy and x.
In standard logistic regression, given labeled relation instances {(xn, yn)}Nn=1, we look for the

model parameters that maximize the probability of the data. We often use a Gaussian prior over
the parameters as follows:

ŵ = arg min
w

[(
−

N∑
n=1

log p(yn|xn;w)

)
+ µ

∑
y

wT
y Σ−1wy

2

]
,

where µ is a fixed parameter to control the influence of the prior, and Σ is usually the identity
matrix.

10

x BL-1 BL-2 WD L-TK
1 0.3308 0.4626 0.4458 0.4363
2 0.4146 0.5206 0.4923 0.4770
3 0.4330 0.5623 0.5117 0.5074
4 0.4847 0.5757 0.5353 0.5314

Table 5: Average F1 over all domains.

When we have labeled relation instances from different domains, usually we either learn a
classification model for each domain independently or we learn a single common classification
model. But given the domain differences, a multitask learning approach may be preferred. We
can treat the K domains as different tasks and assume a different model wk for each task. Given
labeled relation instances {(xkn, ykn)}, we again look for the model parameters that maximize the
overall probability of the data. However, because these different tasks are related, we can assume
that the weight vectors of different domains are correlated. One way is through the following
objective function:

{ŵk} = arg min
{wk}

[(
−

K∑
k=1

Nk∑
n=1

log p(ykn|xkn;wk)

)

+µ
∑
y

∑
f∈F

vTy,fΣ
−1vy,f

2

]
.

Here F is the set of features. vy,f is defined as (w1
y,f , w

2
y,f , . . . , w

K
y,f)

T , i.e. a vector that consists
of the weights for class y and feature f of each domain. Σ is no longer the identity matrix but a
positive semi-definite matrix that encodes the similarities between each pair of domains. The idea
is that if two domains are similar, their weights for the same feature should also be close to each
other.

Given a symmetric domain similarity measure S, we can set

Σk1,k2 = Σk2,k1 =
S(k1, k2)√

S(k1, k1) · S(k2, k2)
.

If the matrix Σ defined this way is positive semi-definite, we can use it in our learning framework.
We still use ACE 2005 dataset for our experiments. We use the best two similarity measures,

L-TK and WD, to set Σ. After preliminary experiments we set µ = 0.25. Multitask learning is
usually more useful when the amount of training data for each task is small. We therefore first
randomly divide the data into 5 subsets and then take x/5 (x = 1, 2, 3, 4) of the data for training
and the last 1/5 for testing. For comparison, we consider two baselines. BL-1: The models for each
domain are trained independently. BL-2: A single model is trained using data across domains.

The results are shown in Table 5. We can see that BL-1 is always the worst while BL-2 performs
the best in all settings, showing that pooling the training data from different domains together to

11

Domain BL-1 BL-2 WD L-TK
NW 0.2590 0.4717 0.4018 0.3863
BN 0.3767 0.5466 0.5280 0.5563
BC 0.3995 0.5163 0.4632 0.4670
WL 0.2002 0.3649 0.3823 0.3704
UN 0.3627 0.4940 0.5001 0.4722

CTS 0.3865 0.3821 0.3994 0.3661

Table 6: F1 for each domain when x = 1.

train a single model is still the best strategy overall. But when the amount of training data is small
(x = 1), we see that the gap between BL-2 and multitask learning (WD and L-TK) is also smaller.
We then zoom into the setting with x = 1 and examine the performance for each domain. The
results are shown in Table 6. We now see that for 4 out of 6 domains (i.e. BN, WL, UN, CTS), at
least one of the multitask learning methods outperforms the baselines. This suggests that for some
domains multitask learning with a good domain similarity measure can be a preferred choice.
However, further studies are needed to find out when a multitask learning approach is preferred.

2.4 Cross-Type Relation Extraction
In this section, we present two general multi-task learning frameworks and how we apply them
to the problem of cross-type relation extraction. We empirically compare these methods on the
ACE04 data set.

2.4.1 Problem definition

Cross-type relation extraction is the problem where a specific target relation type is defined but
we do not have enough training data for this target type. On the other hand we do have labeled
instances for one or a number of other source relation types. The goal is to leverage the training
data for the source types for extraction of relation instances of the target type.

We treat this problem as a multi-task learning problem. The reason we believe that extraction
of these different relation types is related is that different relation types often share some common
syntactic structures. Table 7 shows some examples.

In the following subsections we first introduce two general multi-task learning methods and
then apply them to cross-type relation extraction.

2.4.2 A General MTL Framework

We assume that there are K related classification tasks which share the same set of class labels and
the same feature space. In general for multi-task learning different tasks can have different label
sets and/or different feature spaces. For our relation extraction problem, however, because we treat
the recognition of instances of each relation type as a binary classification problem, we only have
two class labels, namely, the positive class and the negative class. As for features, we can always

12

Syntactic Pattern Relation Instance Relation Type (Subtype)
arg-2 arg-1 Arab leaders OTHER-AFF (Ethnic)

his father PER-SOC (Family)
South Jakarta Prosecution Office GPE-AFF (Based-In)

arg-1 of arg-2 leader of a minority government EMP-ORG (Employ-Executive)
the youngest son of ex-director Suharto PER-SOC (Family)
the Socialist People’s Party of Montenegro GPE-AFF (Based-In)

arg-1 [verb] arg-2 Yemen [sent] planes to Baghdad ART (User-or-Owner)
his wife [had] three young children PER-SOC (Family)
Jody Scheckter [paced] Ferrari to both victories EMP-ORG (Employ-Staff)

Table 7: Examples of similar syntactic structures across different relation types. The head words
of the first and the second arguments are shown in italic and bold, respectively.

take the union of the feature sets observed in each task as the overall feature set. We therefore
assume a single class label set and a single feature set. Let Y = {+,−} denote the class label set.
Let each instance be represented by a feature vector from RF .

We assume that for each task we have a set of labeled instances for training. We denote the
training data for task k as Dk = {xki , yki }

Nk
i=1 (1 ≤ k ≤ K), where xki is the feature vector rep-

resenting the instance, yki is its correct label and Nk is the number of training instances for task
k.

Given a data set Dk, a linear model (predictor) wk can be learnt by:

ŵk = arg min
wk

Nk∑
i=1

L(xki , y
k
i ,w

k)

= arg min
wk

Nk∑
i=1

− log p(yki |xki ,wk)

For the scenario we consider here, we assume the model wk contains two parts: a high dimen-
sional vector vk ∈ RF , and a low dimensional vector uk ∈ RH(H � F):

wk = vk + Akuk

where Ak is an F ×H dimensional matrix which can map the low dimensional vector uk into the
high dimensional space RF .

Thus we get the objective function:(
{v̂k, ûk, Âk}Kk=1

)
= arg min
{vk,uk,Ak}

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i , (v

k + Akuk)) + r(vk,uk,Ak)

)
,

where r(vk,uk,Ak) is a regularization term. Based on different assumptions, we will investigate
two different cases:

wk = vk + Auk (1)
wk = vk + Au (2)

13

Method 1 In this scenario, inspired by [2], we assume that the low dimensional space is shared
among different tasks, so we have:

wk = vk + Auk

The objective function will be:(
{v̂k, ûk}Kk=1, Â

)
= arg min
{vk,uk},A

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i , (v

k + Auk)) + r(vk,uk)

)
+ r(A)

In the following, we consider a special set of regularizers, namely, regularizers based on L-2
norms. As vk = wk −Auk, we have:(

{ŵk, ûk}Kk=1, Â

)
= arg min
{wk,uk},A

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i ,w

k) + λk‖wk −Auk‖2

)
, (3)

s.t. ATA = IH×H .

Note that the last constraint can be seen as the regularizer for A.
In order to solve (3), we use the following alternating optimization procedure:

1. Fix {{uk},A}, and optimize (3) with respect to {wk}.

2. Fix {wk}, and optimize (3) respect to {{uk},A}.

3. Iterate until the stopping criterion is met.

In the first step, when {{uk},A} are fixed, objective function (3) will be:(
{ŵk}Kk=1

)
= arg min

{wk}

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i ,w

k) + λk‖wk −Auk‖2

)
(4)

which can be solved by some well-established methods. Here, we will use L-BFGS to solve (4).
In the second step, {wk} are fixed, then the objective function (3) will be:(

{ûk}Kk=1, Â

)
= arg min

{uk},A

K∑
k=1

λk‖wk −Auk‖2 (5)

s.t. ATA = IH×H

With fixed A, the optimal value for (5) will be achieved at ûk = AT ŵk. By eliminating uk,
we can rewrite (5) as

Â = arg max
A

K∑
k=1

λk‖AT ŵk‖2, s.t. ATA = IH×H

14

Let W = [
√
λ1ŵ

1, . . . ,
√
λKŵ

K] be an F ×K matrix, we have

Â = arg max
A

tr(ATWWTA), s.t. ATA = IH×H (6)

where tr() is the trace of a particular matrix. The solution of problem (6) can be given by the
Singular Value Decomposition (SVD) of W.

More details about the implementation of this model are described in Algorithm 1.

Algorithm 1: The Pseudocode of Solution for Method 1

Input: Dk = {(xki , yki)}Nki=1, H , λk
Output: {ŵk, ûk}Kk=1, Â

1 Initialization: {u′k = 0F}
2 while the stop criterion is not met do
3 /*step 1*/
4 for i← 1 to K do
5 solve: ŵk = arg minwk

∑Nk
i=1 L(xki , y

k
i ,w

k) + λk‖wk − u′k‖2

6 end
7 /*step 2*/
8 W = [

√
λ1ŵ

1, . . . ,
√
λKŵ

K]
9 compute SVD of W: W = V1DV2

10 let the columns of A be the first H columns of V1

11 for i← 1 to K do
12 uk = ATwk

13 u′k = Auk

14 end
15 end

Method 2 In this scenario, both the low dimensional space and the low dimensional vector are
shared among different tasks. Here, we want to force the linear classifiers for different tasks to
share their model weights for those features that are related to the common syntactic patterns. so
we have:

wk = vk + Au

= vk + u′

The objective function will be:(
{v̂k}Kk=1, û

′
)

= arg min
{vk},u′

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i , (v

k + u′)) + r(vk)

)
. (7)

15

By eliminating vk, we can rewrite (7) as:(
{ŵk}Kk=1, û

′
)

= arg min
{wk},u′

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i ,w

k) + λk‖wk − u′‖2

)
. (8)

In order to solve (8), we use the following alternating optimization procedure:

1. Fix u′, and optimize (8) with respect to {wk}.

2. Fix {wk}, and optimize (8) respect to u′.

3. Iterate until the stopping criterion is met.

In the first step, when u′ is fixed, objective function (8) will be:(
{ŵk}Kk=1

)
= arg min

{wk}

K∑
k=1

(Nk∑
i=1

L(xki , y
k
i ,w

k) + λk‖wk − u′‖2

)
(9)

which is similar to (4), so L-BFGS will be adopted.
In the second step, {wk} are fixed. Then the objective function (8) will be:

û′ = arg min
u′

K∑
k=1

λk‖wk − u′‖2 (10)

Equation (10) is a weighted least squares problem. The solution can be directly computed.
More details about the implementation of this model are described in Algorithm 2.

Algorithm 2: The Pseudocode of Solution for Method 2

Input: Dk = {(xki , yki)}Nki=1, λk
Output: {ŵk}Kk=1, û

′

1 Initialization: û′ = 0F
2 while the stop criterion is not met do
3 /*step 1*/
4 for i← 1 to K do
5 solve: ŵk = arg minwk

∑Nk
i=1 L(xki , y

k
i ,w

k) + λk‖wk − u′‖2

6 end
7 /*step 2*/
8 solve: û′ = arg minu′

∑K
k=1 λk‖wk − u′‖2

9 end

16

Relation Type # Positive Instances # Negative Instances Sum
PHYS 1179 12190 13369

PER-SOC 363 3727 4090
EMP-ORG 1605 16466 18071

ART 204 2081 2285
OTHER-AFF 141 1566 1707

GPE-AFF 519 5319 5838
DISC 279 2975 3254
Total 4290 44324 48614

Table 8: Some information of the data set.

2.4.3 Experiment

Data set and experiment setup We used the ACE04 data set to evaluate our proposed methods.
Each pair of entities within a single sentence is considered a candidate relation instance. After
data cleaning, we obtained 4290 positive instances among 48614 candidate relation instances, and
the statistical information of the data set is summarized in Table 8. Following [17], we extract
unigram and bigram features from a sequence representation of each relation instance. There are
seven relation types defined in ACE04. We took each relation type as the target type and used the
remaining types as auxiliary types. This gave us seven sets of experiments.

In each set of experiments for a single target relation type, we randomly divided all the data
into five subsets, and used one subset for testing while using the other four subsets for training,
i.e., each experiment was repeated five times with different training and test sets.

For a specific partition, let Strain denote the union of the source training data, Ttrain denote the
training data of the target type, and Ttest denote the test data of the target type. As we assume that
for the target relation type there is only a small amount of positive instances, we therefore also
randomly choose S positive instances and a proportional number of negative instances (positive
vs. negative ratio is 1:10) from Ttrain to get a smaller target training data set, which can be denoted
as Tsmall. Here we set S to 5.

Given the data generated in this way, we can consider different methods for comparison, which
are summarized in Table 9. MT-1 and MT-2 refer to our proposed method 1 and method 2, re-
spectively. BL-MT1 and BL-MT2 also use the multi-task learning framework but have sufficient
training instances for both the source and the target relation types. The other methods are straight-
forward. We use logistic regression to train a liner classifier and then test on the testing data.

Comparison of different methods We first show the comparison of our proposed multi-task
transfer learning methods with the baseline methods described above. The performance on each
target relation type and the average performance across seven relation types are shown in Table 10.
In this set of experiments, the number of positive seed instances for each target relation type is set
to 5. The parameters are set to their optimal values (λ = 1 for all methods, H = 7 for BL-MT1
and MT-1).

We can draw the following conclusions from the table:

17

Train Test
BL-supervise Ttrain Ttest

BL-big Strain
⋃
Ttrain Ttest

BL-MT1 Strain
⋃
Ttrain Ttest

BL-MT2 Strain
⋃
Ttrain Ttest

BL-source Strain Ttest
BL-few Tsmall Ttest

BL-small Strain
⋃
Tsmall Ttest

MT-1 Strain
⋃
Tsmall Ttest

MT-2 Strain
⋃
Tsmall Ttest

Table 9: Methods for comparison.

• BL-few gives a performance lower bound, while BL-supervise gives a performance upper
bound.

• BL-big performs worse than BL-supervise as we use the instances from other types to train
the linear model directly, while BL-MT1 and BL-MT2 give similar results compared with
BL-supervise as the multi-task learning framework can transfer the knowledge from other
types.

• BL-source shows that without any transfer or co-training, the performance of source training
data is poor.

• BL-small performs poorly compared with BL-few, which shows the necessity of multi-task
transfer learning. Compared with BL-few, MT-1 improves the performance, which shows the
benefit of our proposed multi-task learning method. But MT-2 performs worse than BL-few.
The reason could be that as we do not impose any constraints, the type-dependent features’
weights are also shared between different tasks. We will investigate how to impose such
constraints in the next paragraph by changing the value of λ.

The effect of λ Let us now take a look at the effect of using a different λ. All the settings are the
same with the previous section, except λ = 1000 (As the limitation of running time, we just try a
different value for parameter λ). The results are summarized in Table 11.

From the table, we can see that when we set λ to 1000, the performance is poor. For our
proposed methods MT-1 and MT-2, a large value of λ forces the algorithm to share more common
weights between different tasks, which may lead to non-common features to be shared. For BL-
MT1 and BL-MT2, the results are similar to the above section, which suggests that these two
multi-task learning models are not sensitive to the parameter λ. For all the other baseline methods,
a large λ prefers small weights for the classifier, which may make the distinctive features less
effective. But these results also prove the conclusion we draw in the above section.

18

Target Type T BL-supervise BL-big BL-MT1 BL-MT2 BL-source BL-few BL-small MT-1 MT-2
P 0.8349 0.7591 0.7732 0.7552 0.4057 0.7187 0.4244 0.6776 0.4837

Physical R 0.7531 0.6093 0.7503 0.7279 0.1191 0.1218 0.1041 0.2122 0.1178
F 0.7971 0.6752 0.7611 0.7408 0.1842 0.1925 0.1662 0.3115 0.1883

Personal P 0.8846 0.7721 0.8723 0.8539 0.5238 0.7104 0.5023 0.6019 0.6780
/Social R 0.9200 0.7441 0.8629 0.8544 0.1466 0.4262 0.2068 0.4595 0.4963

F 0.9019 0.7567 0.8664 0.8532 0.2291 0.4996 0.2917 0.5013 0.5576
Employment P 0.8664 0.8173 0.8525 0.8503 0.5285 0.8014 0.5654 0.7851 0.6496
/Membership R 0.8848 0.8130 0.8396 0.8359 0.2242 0.3554 0.2577 0.3894 0.2604
/Subsidiary F 0.8755 0.8151 0.8457 0.8430 0.3148 0.4870 0.3539 0.5157 0.3709

Agent- P 0.9268 0.8114 0.9332 0.9045 0.6923 0.9510 0.5201 0.9311 0.6109
Artifact R 0.9268 0.7904 0.8939 0.8388 0.2195 0.4556 0.2075 0.5035 0.2407

F 0.9268 0.8000 0.9120 0.8700 0.3333 0.6081 0.2948 0.6442 0.3432
PER/ORG P 0.8750 0.8063 0.8529 0.8472 0.9090 0.7821 0.7409 0.7853 0.8133
Affiliation R 0.8750 0.7970 0.8762 0.8431 0.4166 0.8042 0.4842 0.8237 0.5404

F 0.8750 0.8000 0.8636 0.8447 0.5714 0.7890 0.5812 0.7998 0.6366
GPE P 0.8529 0.7977 0.8939 0.8519 0.7580 0.7756 0.7263 0.7152 0.7443

Affiliation R 0.8700 0.8113 0.8640 0.8397 0.4700 0.5528 0.4968 0.6120 0.4747
F 0.8613 0.8041 0.8783 0.8453 0.5802 0.6422 0.5885 0.6542 0.5767
P 0.8947 0.7435 0.8529 0.8382 0.3000 0.4524 0.3480 0.4661 0.5704

Discourse R 0.8947 0.6451 0.8822 0.8397 0.1052 0.2225 0.1084 0.2789 0.2641
F 0.8947 0.6876 0.8666 0.8378 0.1558 0.2973 0.1630 0.3469 0.3591
P 0.8765 0.7868 0.8616 0.8430 0.5882 0.7417 0.5468 0.7089 0.6500

Average R 0.8749 0.7443 0.8527 0.8256 0.2430 0.4198 0.2665 0.4685 0.3421
F 0.8760 0.7627 0.8563 0.8333 0.3384 0.5022 0.3485 0.5391 0.4332

Table 10: Comparison of different methods on ACE 2004 data set. P, R and F stand for precision,
recall and F1, respectively. λ = 1.

Target Type T BL-supervise BL-big BL-MT1 BL-MT2 BL-source BL-few BL-small MT-1 MT-2
P 0.8765 0.6999 0.8156 0.7787 0.4745 0.0000 0.4925 0.8181 0.4540

Physical R 0.3021 0.2701 0.7611 0.6322 0.1191 0.0000 0.1049 0.0918 0.1039
F 0.4493 0.3891 0.7873 0.6974 0.1904 0.0000 0.1722 0.1528 0.1687

Personal P 0.8913 0.8327 0.9028 0.8252 0.0000 0.0000 0.0649 0.7943 0.3570
/Social R 0.5466 0.6022 0.8538 0.7735 0.0000 0.0000 0.0086 0.4867 0.0866

F 0.6776 0.6976 0.8774 0.7969 0.0000 0.0000 0.0151 0.5599 0.1380
Employment P 0.8413 0.8347 0.8981 0.8770 0.6800 0.0000 0.7136 0.8066 0.6314
/Membership R 0.6909 0.6263 0.8606 0.7977 0.2060 0.0000 0.2207 0.3083 0.2414
/Subsidiary F 0.7587 0.7150 0.8788 0.8353 0.3162 0.0000 0.3367 0.4422 0.3490

Agent- P 0.9285 0.8693 0.9477 0.8812 0.9130 0.0000 0.8605 0.9366 0.8385
Artifact R 0.3170 0.6391 0.8840 0.7270 0.5121 0.0000 0.6185 0.3367 0.5003

F 0.4727 0.7322 0.9129 0.7951 0.6562 0.0000 0.7157 0.4883 0.6196
PER/ORG P 1.0000 0.8926 0.8633 0.8745 0.9285 0.0000 0.8715 0.8014 0.8385
Affiliation R 0.4583 0.5912 0.8743 0.8076 0.5416 0.0000 0.5012 0.7981 0.5269

F 0.6285 0.7035 0.8683 0.8392 0.6842 0.0000 0.6292 0.7962 0.6441
GPE P 0.8571 0.8541 0.8985 0.8592 0.8709 0.0000 0.8482 0.8134 0.8233

Affiliation R 0.4200 0.6794 0.8578 0.7980 0.5400 0.0000 0.5888 0.4951 0.5956
F 0.5637 0.7554 0.8775 0.8266 0.6666 0.0000 0.6931 0.6135 0.6894
P 0.0000 0.4271 0.9171 0.7616 0.2000 0.0000 0.3151 0.4898 0.4301

Discourse R 0.0000 0.1086 0.8369 0.6059 0.0350 0.0000 0.0723 0.2006 0.1058
F 0.0000 0.1723 0.8748 0.6759 0.0579 0.0000 0.1171 0.2819 0.1683
P 0.7707 0.7729 0.8923 0.8368 0.5810 0.0000 0.5952 0.7800 0.6247

Average R 0.3907 0.5024 0.8469 0.7351 0.2791 0.0000 0.3021 0.3882 0.3086
F 0.5072 0.5950 0.8681 0.7809 0.3674 0.0000 0.3827 0.4764 0.3967

Table 11: Comparison of different methods on ACE 2004 data set. P, R and F stand for precision,
recall and F1, respectively. λ = 1000.

19

Sensitivity of H Another parameter for MT-1 and BL-MT1 is the dimensionality H . To see how
the performance may vary as H changes, we try different settings. The results are summarized
in Table 12. As we can see from the table, the performance of MT-1 and BL-MT1 are relatively
stable, which suggests that these multi-task methods are not very sensitive to the value of H .

Target Type T BL-MT1 MT-1
H = 1 H = 4 H = 7 H = 1 H = 4 H = 7

P 0.7500 0.7763 0.7732 0.6934 0.6312 0.6776
Physical R 0.7143 0.7558 0.7503 0.1603 0.1811 0.2122

F 0.7314 0.7655 0.7611 0.2513 0.2761 0.3115
Personal P 0.8589 0.8632 0.8723 0.7174 0.8197 0.6091
/Social R 0.8446 0.8497 0.8629 0.4094 0.6325 0.4595

F 0.8513 0.8554 0.8664 0.4917 0.6972 0.5013
Employment P 0.8217 0.8559 0.8525 0.8168 0.8091 0.7851
/Membership R 0.8311 0.8408 0.8396 0.3384 0.3694 0.3894
/Subsidiary F 0.8263 0.8481 0.8457 0.4757 0.5043 0.5157

Agent- P 0.9595 0.9563 0.9332 0.9338 0.8993 0.9311
Artifact R 0.8939 0.8541 0.8939 0.3954 0.4115 0.5035

F 0.9252 0.9014 0.9120 0.5521 0.5621 0.6442
PER/ORG P 0.8471 0.8988 0.8529 0.8590 0.9181 0.7853
Affiliation R 0.8718 0.8679 0.8762 0.8021 0.7412 0.8237

F 0.8585 0.8824 0.8636 0.8268 0.8153 0.7998
GPE P 0.8617 0.8486 0.8939 0.8361 0.8803 0.7152

Affiliation R 0.8487 0.8443 0.8640 0.5625 0.4653 0.6120
F 0.8550 0.8462 0.8783 0.6713 0.6070 0.6542
P 0.8868 0.8404 0.8529 0.4627 0.7437 0.4661

Discourse R 0.8695 0.8673 0.8822 0.2268 0.2947 0.2789
F 0.8769 0.8536 0.8666 0.3024 0.4201 0.3469
P 0.8551 0.8628 0.8616 0.7599 0.8144 0.7089

Average R 0.8391 0.8400 0.8527 0.4136 0.4423 0.4685
F 0.8464 0.8504 0.8563 0.5102 0.5546 0.5391

Table 12: Effect of the dimensionality of low space. P, R and F stand for precision, recall and F1,
respectively. λ = 1.

Changing the number of seed instances Finally, we compare Bl-few with MT-1 and MT-2
when the number of positive seed instances increases. We set S from 2 up to 100, and the results
are shown in Figure 2.5.5. We can see that when the number of positive seed instances is small, as
we expected, MT-1 and MT-2 outperforms baseline method BL-few. When S is large, the problem
becomes more like traditional supervised learning problem, in this case, the performance of these
three algorithms are quite similar.

20

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

F
1

m
ea

su
re

number of positive training instances

BL-few
MT-2
MT-1

(a) Physical task

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

F
1

m
ea

su
re

number of positive training instances

BL-few
MT-2
MT-1

(b) Discourse task

Figure 1: The effect of the amount of training data on the performance.

2.5 Extraction of Relation Descriptors
2.5.1 Problem definition

Depending on the application and the resources available, relation extraction has been studied in
a number of different settings. When relation types are well defined and labeled relation mention
instances are available, supervised learning is usually applied [36, 39, 5, 37]. When relation types
are known but little training data is available, bootstrapping has been used to iteratively expand the
set of seed examples and relation patterns [1]. When no relation type is pre-defined but there is
a focused corpus of interest, unsupervised relation discovery tries to cluster entity pairs in order
to identify interesting relation types [14, 28, 31]. More recently, open relation extraction has also
been proposed where there is no fixed domain or pre-defined relation type and the goal is to identify
all possible relations from an open-domain corpus [3].

These different relation extraction settings suit different applications. In this section, we focus
on another setting where the relation types are defined at a general level but a more specific relation
description is desired. For example, in the widely used ACE3 data sets, relation types are defined at
a fairly coarse granularity. Take for instance the “employment” relation, which is a major relation
type defined in ACE. In ACE evaluation, extraction of this relation only involves deciding whether
a person entity is employed by an organization entity. In practice, however, we often also want to
find the exact job title or position this person holds at the organization if this information is also
mentioned in the text. Table 13 gives some examples. We refer to the segment of text that de-
scribes the specific relation between the two related entities (i.e. the two arguments) as the relation
descriptor. This section studies how to extract such relation descriptors given two arguments.

One may approach this task as a sequence labeling problem and apply methods such as the
linear-chain conditional random fields (LC-CRF) [19]. However, this solution ignores a useful
property of the task: the space of possible label sequences is much smaller than that enumerated
by an LC-CRF. There are two implications. First, the normalization constant in the LC-CRF is too
large because it also enumerates the impossible sequences. Second, the restriction to the correct

3Automatic Content Extraction http://www.itl.nist.gov/iad/mig/tests/ace/

21

Relation Candidate Relation Instance Relation Descriptor
Employment ... said ARG-1 , a vice president at ARG-2 , which ... a vice president
(PER, ORG) A ARG-2 spokesman , ARG-1 , said the company now ... spokesman

At ARG-2 , by contrast , ARG-1 said customers spend on ... Nil
Social ARG-1 had an elder brother named ARG-2 . an elder brother

(PER, PER) ARG-1 was born at ... , as the son of ARG-2 of Sweden ... the son
ARG-1 later married ARG-2 in 1973 , ... married
Through his contact with ARG-1 , ARG-2 joined the
Greek Orthodox Church .

Nil

Table 13: Some examples of candidate relation instances and their relation descriptors.

space of label sequence permits the use of long-range features without an exponential increase in
computational cost. So we propose a modified CRF model for this problem.

Now we define the task of extracting relation descriptors for a given pre-defined class of rela-
tions such as “employment.” Given two named entities occurring in the same sentence, one acting
as ARG-1 and the other as ARG-2, we aim to extract a segment of text from the sentence that best
describes a pre-defined general relation between the two entities.

Formally, let (w1, w2, . . . , wn) denote the sequence of tokens in a sentence, where wp is ARG-
1 and wq is ARG-2 (1 ≤ p, q ≤ n, p 6= q). Our goals is to locate a subsequence (wr, . . . , ws)
(1 ≤ r ≤ s ≤ n) that best describes the relation between ARG-1 and ARG-2. If ARG-1 and ARG-2
are not related through the pre-defined general relation, Nil should be returned.

Note that the above definition constrains ARG-1 and ARG-2 to single tokens. In our exper-
iments, we will replace the original name strings of ARG-1 and ARG-2 with the generic tokens
ARG1 and ARG2 because we believe that the relation extraction models should be independent on
the actual names of the arguments. Examples of sentences with the named entities replaced with
argument tokens are shown in the second column of Table 13.

2.5.2 Related Work

Most existing work on relation extraction studies binary relations between two entities. For su-
pervised relation extraction, existing work often uses the ACE benchmark data sets for evalua-
tion [5, 39, 37]. In this setting, a set of relation types are defined and the task is to identify pairs
of entities that are related and to classify their relations into one of the pre-defined relation types.
It is assumed that the relation type itself is sufficient to characterize the relation between the two
related entities. However, based on our observation, some of the relation types defined in ACE
such as the “employment” relation and the “personal/social” relation are very general and can be
further characterized by more specific descriptions.

Recently open relation extraction has been proposed for open-domain information extrac-
tion [3]. Since in the open domain we cannot assume a fixed set of relation types, open relation
extraction aims at extracting all possible relations between pairs of entities. The extracted results
are (ARG-1, REL, ARG-2) tuples. The TextRunner system based on [3] extracts a diverse set of
relations from a huge Web corpus. These extracted predicate-argument tuples are presumably the

22

most useful to support Web search scenarios where the user is looking for specific relations. How-
ever, because of the diversity of the extracted relations and the domain independence, open relation
extraction is probably not suitable for populating relational databases or knowledgebases. In con-
trast, the task of extracting relation descriptors as we have proposed still assumes a pre-defined
general relation type, which ensures that the extracted tuples follow the same relation definition
and thus can be used in applications such as populating relational database tables.

In terms of models and techniques, we use standard linear-chain CRF as our baseline, which
is the main method used in [3] as well as for many other information extraction problems. The
major modifications we propose for our task are reduction of the label sequence space and the
incorporation of long-range features. We note that these modifications are closely related to the
semi-Markov CRF models proposed by [29]. In fact, the modified CRF model for our task can
be considered as a special case of semi-Markov CRF where we only consider label sequences that
contain at most one relation descriptor sequence.

2.5.3 Method

A Linear-Chain CRF Solution The relation descriptor extraction task can be naturally treated
as a sequence labeling problem. Let x = (x1, x2, . . . , xn) denote the sequence of observations in
a relation instance, where xi is wi augmented with additional information such as the POS tag of
wi, the phrase boundary information, etc. Each observation xi is associated with a label yi ∈ Y
which indicates whether wi is part of the relation descriptor. Following the commonly used BIO
notation in sequence labeling, we define Y = {B-REL, I-REL,O}. Let y = (y1, y2, . . . , yn) denote
the sequence of labels for x. Our task can be reduced to finding the best label sequence y∗ among
all the possible label sequences for x.

For sequence labeling tasks in NLP, linear-chain conditional random field has been rather suc-
cessful. It is an undirected graphical model in which the conditional probability of a label sequence
y given the observation sequence x is

p(y|x,Λ) =
exp

(∑
i

∑
k λkfk(yi−1, yi,x)

)
Z(x,Λ)

, (11)

where Λ = {λk} is the set of model parameters, fk is an arbitrary feature function defined over
two consecutive labels and the whole observation sequence, and

Z(x,Λ) =
∑
y′

exp
(∑

i

∑
k

λkfk(y
′
i−1, y

′
i,x)

)
(12)

is a normalization constant.
Given a set of training instances {xj,y∗j} where y∗j is the correct label sequence for xj , we can

learn the best model parameters Λ̂ as follows:

Λ̂ = arg min
Λ

(
−
∑
j

log p(y∗j |xj ,Λ) + β
∑
k

λ2
k

)
. (13)

23

Here β
∑

k λ
2
k is a regularization term.

Improvement over Linear-Chain CRF We note that while we can directly apply linear-chain
CRF to extract relation descriptors, there are some special properties of our task that allow us to
modify standard linear-chain CRF to better suit our needs.

Label sequence constraint In linear-chain CRF, the normalization constant Z considers all pos-
sible label sequences y. For the relation descriptor extraction problem, however, we expect that
there is either a single relation descriptor sequence or no such sequence. In other words, for a given
relation instance, we only expect two kinds of label sequences: (1) All yi are O. (2) Exactly one yi
is B-REL followed by zero or more consecutive I-REL while all other yi are O. Therefore the space
of label sequences should be reduced to only those that satisfy the above constraint.

One way to exploit this constraint within linear-chain CRF is to only consider it during testing.
We can pick the label sequence that has the highest probability in the valid label sequence space
instead of the entire label sequence space. For a candidate relation instance x, let Ỹ denote the set
of valid label sequences, i.e. those that has either one or no relation descriptor sequence. We then
choose the best sequence ŷ as follows:

ŷ = arg max
y∈Ỹ

p(y|x, Λ̂). (14)

However, to fully exploit the constraint, at the training stage, we should also consider only Ỹ by
defining the normalization term Z as follows:

Z(x,Λ) =
∑
y′∈Ỹ

exp
(∑

i

∑
k

λkfk(y
′
i−1, y

′
i,x)

)
. (15)

Note that the difference between Equation (15) and Equation (12) is the set of label sequences
to consider. In other words, while in linear-chain CRF the correct label sequence competes with
all possible label sequences for the probability mass, for our task the correct label sequence should
compete with only other valid label sequences. In Section 2.5.5 we will compare these two different
normalization terms and show the advantage of using Equation (15).

Adding long-range features In linear-chain CRF models, only first-order label dependencies
are considered because features are defined over two consecutive labels. More general higher-
order CRF models also exist, allowing long-range features defined over more than two consecutive
labels. But the computational cost of higher-order CRFs also increases exponentially. For our
task, because of the constraint on the space of label sequences, we can afford to define long-range
features without blowing up the feature space. Let g(y,x) denote a feature function defined over
the entire label sequence y and the observation sequence x. We can include such feature functions
in our model as follows:

24

Description Feature Template Example
single token wi (−2 ≤ i ≤ 2) w1 is president
single POS tag ti (−2 ≤ i ≤ 2) t1 is N
single phrase tag pi (−2 ≤ i ≤ 2) p1 is I-NP
two consecutive tokens wi−1&wi (−1 ≤ i ≤ −2) w0 is the and w1 is president
two consecutive POS tags ti−1&ti (−1 ≤ i ≤ −2) t0 is DET and t1 is N
two consecutive phrase tags pi−1&pi (−1 ≤ i ≤ −2) p0 is B-NP and p1 is I-NP

Table 14: Linear-chain feature templates. Each feature is defined with respect to a particular
(current) position in the sequence. i indicates the position relative to the current position. All
features are defined using observations within a window size of 5 of the current position.

p(y|x,Θ) = 1
Z(x,Θ)

[
exp

(∑
i

∑
k λkfk(yi−1, yi,x)

+
∑

l µlgl(y,x)
)]
, (16)

where Θ = {{λk}, {µl}} is the set of all model parameters. Note that although each f(yi−1, yi,x)
can also be regarded as a g(y,x), here we group all features that can be captured by linear-chain
CRF under f and other real long-range features under g. In Section 2.5.5 we will see that with the
additional g feature functions relation extraction performance can also be further improved.

2.5.4 Features

We now describe the features we use in the baseline linear-chain CRF model and our modified
CRF model.

Linear-chain features The linear-chain features are those that can be formulated as f(yi−1, yi,x),
i.e. those that depend on x and two consecutive labels only. We use typical features that include
tokens, POS tags and phrase boundary information coupled with label values. Let ti denote the
POS tag of wi and pi denote the phrase boundary tag of wi. The phrase boundary tags also follow
the BIO notation. Examples include B-NP, I-VP, etc. Table 14 shows the feature templates cov-
ering only the observations. Each feature shown in Table 14 is further combined with either the
value of the current label y0 or the values of the previous and the current labels y−1 and y0 to form
zeroth order and first order features. For example, a zeroth order feature can be “y0 is B-REL and
w0 is the and w1 is president”, and a first order feature can be “y−1 is O and y0 is B-REL and
t0 is N”.

Note that since we represent the two arguments using tokens ARG1 and ARG2, the argument
positions are given as part of the observation sequence x, and hence are implicitly captured by the
zeroth and first order features.

25

Category Feature Template Description Example
Contextual Features wordwr−1 or POS tag tr−1 preceding relation de-

scriptor
, REL

word ws+1 or POS tag ts+1 following relation de-
scriptor

REL PREP

Path-based Features word or POS tag sequence between ARG1 and re-
lation descriptor

ARG1 is REL

word or POS tag sequence between ARG2 and re-
lation descriptor

REL PREP ARG2

word or POS tag sequence containing ARG1,
ARG2 and relation descriptor

ARG2 ’s REL , ARG1

Phrase Boundary whether relation descriptor violates phrase bound-
aries

1 or 0

Features

Table 15: Long-range feature templates. r and s are the indices of the first word and the last word
of the relation descriptor, respectively.

Long-range features Long-range features are those that cannot be defined based on only two
consecutive labels. When defining long-range features, we treat the whole relation descriptor se-
quence as a single unit, denoted as REL. Given a label sequence y that contains a relation descriptor
sequence, let (wr, wr+1, . . . , ws) denote the relation descriptor, that is, yr = B-REL and yt = I-REL
where (r + 1 ≤ t ≤ s). The long-range features we use are categorized and summarized in Ta-
ble 15. These features capture the context of the entire relation descriptor, its relation to the two
arguments, and whether the boundary of the relation descriptor conforms to the phrase boundaries
(since we expect that most relation descriptors consist of a single or a sequence of phrases).

2.5.5 Experiments

Data Preparation Since the task of extracting relation descriptors is new, we are not aware
of any data set that can be directly used to evaluate our methods. We therefore annotated two
data sets for evaluation, one for the general “employment” relation and the other for the general
“personal/social” relation4.

The first data set contains 150 business articles from New York Times. The articles were
crawled from the NYT website between November 2009 and January 2010. After sentence split-
ting and tokenization, we used the Stanford NER tagger5 to identify PER and ORG named entities
from each sentence. For named entities that contain multiple tokens we concatenated them into a
single token. We then took each pair of (PER, ORG) entities that occur in the same sentence as a
single candidate relation instance, where the PER entity is treated as ARG-1 and the ORG entity
is treated as ARG-2. A human annotator manually went through each candidate relation instance
to decide (1) whether there is an employment relation between the two arguments and (2) whether

4We will make our data sets publicly available.
5http://nlp.stanford.edu/ner/index.shtml

26

Data Set total positive negative distinct
descriptors

NYT 536 208 328 140
Wikipedia 700 122 578 70

Table 16: Numbers of instances in each data set. Positive instances are those that have an explicit
relation descriptor. The last column shows the number of distinct relation descriptor strings.

there is an explicit sequence of words describing the position or job title held by ARG-1 in ARG-2.
The second data set comes from a Wikipedia personal relation data set previously used in [11].

The original data set6 does not contain annotations of relation descriptors such as “sister” or
“friend” between the two PER arguments. Our human annotator therefore also manually anno-
tated this data set. Similarly, we performed sentence splitting, tokenization and NER tagging, and
took pairs of (PER, PER) entities occurring in the same sentence as a candidate relation instance.
Because both arguments involved in the “personal/social” relation are PER entities, we always
treat the first PER entity as ARG-1 and the second PER entity as ARG-27.

Note that our annotated relation descriptors are not always nouns or noun phrases. An example
can be found in the last but one row of Table 13, where the relation descriptor “married” is a verb
and indicates a spouse relation.

The total numbers of relation instances, the numbers of positive and negative instances as well
as the numbers of distinct relation descriptor strings in each data set are summarized in Table 16.

Experiment Setup We compare the following methods in our experiments:

• LC-CRF: This is the standard linear-chain CRF model with features described in Table 14.

• M-CRF-1: This is our modified CRF model with the space of label sequences reduced but
with features fixed to the same as those used in LC-CRF.

• M-CRF-2: On top of M-CRF-1, in M-CRF-2 we include the contextual long-range features
as described in Table 15.

• M-CRF-3: On top of M-CRF-2, in M-CRF-3 we include the path-based long-range features
as described in Table 15.

• M-CRF-4: On top of M-CRF-3, in M-CRF-4 we include the phrase boundary long-range
features as described in Table 15.

For the standard linear-chain CRF model, we used the package CRF++8. We implemented our
own version of the modified CPF models from scratch.

We perform 10-fold cross validation for all our experiments. For each data set we first randomly
divide it into 10 subsets. Each time we take 9 subsets for training and the remaining subset for

6http://www.cs.umass.edu/˜culotta/data/wikipedia.html
7Since many personal/social relations are asymmetric, ideally we should assign ARG-1 and ARG-2 based on their

semantic meanings rather than their positions. Here we take a simple approach.
8http://crfpp.sourceforge.net/

27

testing. We report the average performance across the 10 runs. It also enables us to perform
statistical significance tests.

Based on our preliminary experiments, we found that using a smaller set of general POS tags
instead of the standard Penn Treeback POS tag set could slightly improve the overall performance.
We therefore only report the performance obtained using the general POS tags. For example, NN,
NNP, NNS and NNPS are grouped together into a general tag N.

We evaluate the performance using two different criteria: overlap match and exact match.
Overlap match is a more relaxed criterion: if the predicted relation descriptor overlaps with the
true relation descriptor (i.e. having at least one token in common), it is considered correct. Exact
match is a much stricter criterion: it requires that the predicted label sequence must be exactly the
same as the true label sequence in order to be considered correct. Given these two criteria, we
can define accuracy, precision, recall and F1 measures. Accuracy is the percentage of candidate
relation instances whose label sequence is considered correct. Both positive and negative instances
are counted when computing accuracy. Because our data sets are quite balanced, it is reasonable
to use accuracy. Precision, recall and F1 are defined in the usual way at the relation instance level.

Method Comparison In Table 17 and Table 18, we summarize the performance in terms of the
various measures on the two data sets, respectively. For both the baseline LC-CRF model and our
modified CRF models, there is a regularization parameter β that needs to be manually set. (See
Equation (13).) We tuned this parameter and show only the results using the optimal parameter
values for each data set.

Overlap Match Exact Match
Method Accu. Prec. Rec. F1 Accu. Prec. Rec. F1
LC-CRF 0.8173 0.8407 0.6548 0.7303 0.8117 0.8373 0.6394 0.7186
M-CRF-1 0.8491† 0.8640 0.7202† 0.7830† 0.8454† 0.8625 0.7124† 0.7774†

M-CRF-2 0.8491 0.8627 0.7202 0.7819 0.8454 0.8617 0.7124 0.7763
M-CRF-3 0.8659† 0.9000† 0.7364 0.8070† 0.8640† 0.8992† 0.7319† 0.8038†

M-CRF-4 0.8659 0.9000 0.7364 0.8070 0.8640 0.8992 0.7319 0.8038

Table 17: Comparison of different methods on the New York Times data set. Accu., Prec., Rec.
and F1 stand for accuracy, precision, recall and F1 measures, respectively. † indicates that the
current value is statistically significantly better than the value in the previous row at a 0.95 level of
confidence by one-tailed T-test.

First of all, we can see from the tables that by reducing the label sequence space, M-CRF-1
can significantly outperform the baseline LC-CRF in terms of F1 in all cases. In terms of accuracy,
there is significant improvement for the NYT data set but not for the Wikipedia data set. We also
notice that for both data sets the advantage of M-CRF-1 are mostly evident in the improvement
of recall. It shows that by reducing the label sequence space we are able to extract more correct
relation descriptors.

Next we see from the tables that long-range features are also useful, and the improvement
comes mostly from the path-based long-range features. In terms of both accuracy and F1, M-

28

Overlap Match Exact Match
Method Accu. Prec. Rec. F1 Accu. Prec. Rec. F1
LC-CRF 0.8486 0.6513 0.3140 0.4137 0.8457 0.6489 0.2980 0.3931
M-CRF-1 0.8414 0.5648 0.4233† 0.4778† 0.8386 0.5530 0.4072† 0.4609†

M-CRF-2 0.8471 0.5859 0.4260 0.4873 0.8443 0.5741 0.4099 0.4704
M-CRF-3 0.8657† 0.6847† 0.4488 0.5318† 0.8628† 0.6823† 0.4327 0.5144†

M-CRF-4 0.8671 0.6966 0.4388 0.5278 0.8643 0.6942 0.4228 0.5105

Table 18: Comparison of different methods on the Wikipedia data set. Accu., Prec., Rec. and F1
stand for accuracy, precision, recall and F1 measures, respectively. † indicates that the current value
is statistically significantly better than the value in the previous row at a 0.95 level of confidence
by one-tailed T-test.

CRF-3 can significantly outperform M-CRF-1 in all settings. In this case, the improvement is a
mixture of both precision and recall. It shows that by explicitly capturing the patterns between
the two arguments and the relation descriptor, we can largely improve the extraction performance.
On the other hand, neither the contextual long-range features nor the phrase boundary long-range
features exhibit any impact significantly. We hypothesize the following reasons: for contextual
long-range features, they have already been captured in the linear-chain features. For example,
the long-range feature “is REL” is similar to the linear-chain feature “w−1 = is & y0 = B-R”. For
the phrase boundary long-range feature, since phrase boundary tags have also been used in the
linear-chain features, this feature may not provide further help. In addition, we examined our
annotated data and found that for the NYT data set around 22% of the positive instances actually
have relation descriptors violating phrase boundaries, and in the Wikipedia data set the percentage
increases to arond 29%. Therefore phrase boundaries are not an important factor when extracting
relation descriptors.

Overall, performance is much higher on the NYT data set than on the Wikipedia data set.
Based on our observations during annotation, this is due to the fact that the “employment” rela-
tions expressed in the NYT data set often follow some standard patterns, whereas in Wikipedia
the “personal/social” relations can be expressed in various different ways. The relatively low per-
formance achieved on the Wikipedia data set suggests that extracting relation descriptors is not an
easy task even under a supervised learning setting.

Presumably relation descriptors that are not seen in the training data are harder to extract. We
would therefore also like to see how well our model works on such unseen relation descriptors. We
find that with 10-fold cross validation, for the NYT data set, on average our model is able to extract
approximately 67% of the unseen relation descriptors in the test data, and for the Wikipedia data
set this percentage is approximately 27%. Both numbers are lower than the overall recall values
the model can achieve on the entire test data, showing that unseen relation descriptors are indeed
harder to extract. But it still shows that our model is able to pick up new relation descriptors.

The Effect of Training Data Size For the previous experiments, we always used 90% of the
data for training and the remaining 10% for testing. We now take a look at how the performance

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

O
ve

rla
p

F
1

m
ea

su
re

Number of training data

LC-CRF
M-CRF-3

(a) New York Times

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

E
xa

ct
 F

1
m

ea
su

re

Number of training data

LC-CRF
M-CRF-3

(b) New York Times

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

O
ve

rla
p

F
1

m
ea

su
re

Number of training data

LC-CRF
M-CRF-3

(c) Wikipedia

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700
E

xa
ct

 F
1

m
ea

su
re

Number of training data

LC-CRF
M-CRF-3

(d) Wikipedia

Figure 2: The effect of the training data size

changes with different numbers of training instances. We vary the training data size from only a
few instances (2, 5, and 10) to 20%, 40%, 60% and 80% of the entire data set. The results are
shown in Figure 1.

As we can expect, when the number of training instances is small, the performance on both
data sets is low. The figure also shows that between the two data sets the Wikipedia data set is the
more difficult one, which is consistent with our observations with the data as mentioned earlier.

The modified CRF model consistently outperforms the baseline LC-CRF model, which is not
surprising. We can see that with the modified CRF model to achieve the same level of performance
the required training data size can be much smaller compared with the baseline LC-CRF model.
For example, Figure 2(b) shows that with 482 training instances the LC-CRF model gives an exact
F1 of around 0.719, but to achieve this level of F1, the modified CRF model only needs fewer than
215 training instances.

2.6 Conclusions
This is the final report of the DSO funded project on transfer learning for adaptive relation extrac-
tion. We presented three pieces of work:

• Cross-domain Relation Extraction: First, we proposed and compared a number of domain

30

similarity measures for relation extraction and found that a lexicalized tree kernel-based
measure was the most effective in finding good source domains. We then applied the domain
similarity measures in a multitask relation extraction framework and found that when the
amount of training data was small multitask learning could help some domains.

• Cross-type Relation Extraction: Next, we studied cross-type relation extraction problem.
We propose two multi-task transfer learning methods. The experiments on ACE04 data
showed that multi-task models could improve the performance.

• Extraction of Relation Descriptors: Finally we studied relation extraction under a new
setting: The relation types are defined at a general level but more specific relation descriptors
are desired. Based on the special properties of this new task, we found that standard linear-
chain CRF models have some potential limitations for this task. We subsequently proposed
some modifications to linear-chain CRF in order to suit our task better. We annotated two
data sets to evaluate our methods. The experiments showed that by restricting the space of
possible label sequences and introducing certain long-range features, the performance of the
modified CRF model can perform significantly better than standard linear-chain CRF.

31

3 NUS Technical Report: Relation extraction in resource-poor
domains

3.1 Research Team
The research work in this chapter is performed mainly in NUS. The NUS research team consists
of Assoc. Prof. Wee Sun Lee (PI), PhD students Nan Ye and Viet Cuong Nguyen. The DSO team
consists of Dr. Hai Leong Chieu and Dr. Kian Ming A. Chai.

3.2 Introduction
The task of information extraction (IE) is concerned with converting unstructured information
sources (such as news articles) to structured information representation which has simple seman-
tics and is easily manipulable (such as database records). The widespread use of computers and
the Internet has made large amount of unstructured information sources easily available, and has
spurred interests in various specialized IE tasks, such as tracking disease outbreak [13], extracting
protein-protein interaction from papers [4], extracting information from merchant web sites for
comparison shopping [15], and semantic role labeling [6]. Examples of IE tasks include Named
Entity Recognition (NER), Relation Extraction (RE), and Event Detection. NER invovles rec-
ognizing named entities (NEs) such as persons, organizations, locations. RE invovles extracting
some relationships, which is usually prespecified, between NEs. Example relations include the
organization-affiliation relation – whether a person works for an organization, and familial rela-
tion – whether two people are family members. The goal of IE is to discover domain-independent
technology for various extraction tasks.

In this project, we consider extraction of binary relations in sentences from plain texts in
resource-poor domains, and limit us to building relation extraction systems without using parsers.
We assume there is a set of example sentences with the true relations marked out, and use ma-
chine learning techniques to train an extraction system. In addition, we shall only consider RE at
the sentence level, in consideration that the dataset we used, that is, the ACE (Automatic Content
Extraction) 2005 corpus, only tags relation instances with explicit clues within a sentence 9.

Previous works on using machine learning approach for RE mainly treat RE as a classification
problem. The NEs are assumed to be marked out, then a classifier is trained to classify the rela-
tion between any two NEs, using various context information extracted from texts – such as the
entity types of the NEs, the words contained in or surrounding the NEs. For example, consider
the sentence Peter is working for IBM., which contains an instance of the organization-affiliation
relation. In this case, it is assumed that Peter and IBM have been labeled as PERSON and ORGA-
NIZATION respectively. A useful feature in this case is the phrase working for, which indicates
the organization-affiliation relation between Peter and IBM.

We explore models which can incorporate structures in the data in this project.
In Section 3.3, we first consider a simplified case of RE in which only sentences containing

at most one instance of any relation under consideration. We first describe an approach based

9See http://projects.ldc.upenn.edu/ace/docs/English-Relations-Guidelines v5.8.3.pdf

32

on Conditional Random Fields (CRFs) [19]. Using the baseline techniques, we get an F-score
of around 39% on a subset of sentences containing at most one relation. If we use hand-labeled
entity-type tags instead of machine tagged entity-types, we are able to obtain obtain an F-score of
around 54%. This indicates that one potential area for improvement is to improve the automatic
entity-type tagger. We also found that a common source of error is to tag sentences containing no
relation with some relation tags. Assuming a perfect classifier that is able to classify whether a
sentence has a relation (and its type), the F-score can be improved to 64%.

We then consider two approaches for relation extraction. One approach, described in Sec-
tion 3.4, is designed to capture the structure of relations in a sentence to jointly extract all the
relations in one sentence. This approach is related to [18], which makes use of the matrix tree
theorem to perform dependency tree parsing. Another approach, described in Section 3.5, uses
CRF with high-order semi-Markov features to capture long-range dependencies between the two
relation arguments. The algorithms extend ideas in first-order semi-Markov CRF [29] and high-
order CRFs [35]. In Section 3.6, we demonstrate the empirical performance of the two approaches
on the ACE 2005 dataset [34], and demonstrates that combining the outputs of different systems
can be very effective: The precisions and recalls of the combined model are at least comparable to
the individual systems, and the F1 scores are at least 4% better. Section 3.7 concludes the report
by discussing important factors and difficulties in building an RE system.

3.3 A Simplified Case
We consider extracting relations from sentences containing at most one relation in this section. We
first show how to convert RE to a sequence labeling problem in Section 3.3.1, then we proceed to
describe the conditional random fields (CRFs), a model which has been successfully applied for
various sequence labeling problems in Section 3.3.2. Section 3.3.3 describes a basic CRF together
with variants for RE. Section 3.3.4 describes the dataset used for evaluation. Section 3.3.5 contains
experimental results with discussions.

3.3.1 Relation Extraction as Sequence Labeling

Consider extracting is-Affiliated-with-Organization relation instances from texts. An instance of
this relation is contained in the following sentence: Senator Christopher Dodd of Connecticut
made the announcement today that he would not be the 10th candidate for the nomination., where
Christopher Dodd is affiliated with Connecticut.

In this case, we can label Christopher and Dodd with Arg1, Connecticut with Arg2 and other
words with O. If there is at most one instance of the relation under consideration, then such labeling
can always be done. Note that a trained tagger sometimes may tag several phrases as Arg1 or Arg2.
We take all Arg1-Arg2 pairs as the predicted relation instances.

A tagger is first trained for each relation type. Given a sentence, their predicted relations are
merged as the output.

33

3.3.2 Conditional Random Fields

A conditional random field induces a conditional probability distribution of label sequences given
an observation sequence, as described below. Assume a fixed set of possible observations, and
a fixed set of possible labels. Let x and y denote an observation sequence and a label sequence
respectively. Let | · | be the function which maps a sequence to its length. A set of features
f1, . . . , fm, which are real-valued functions of the form fi(x,y, t) (defined only when |x| = |y|,
and 1 ≤ t ≤ |x|), are first chosen. Each fi is associated with a real-valued weight λi which is to be
determined. Let ~λ = (λ1, . . . , λm), and W~λ(x,y) = exp(

∑
i

∑
t λifi(x,y, t)), then using W~λ we

can induce the following probability distribution: P~λ(y|x) =
W~λ

(x,y)∑
y′ W~λ

(x,y)
. P~λ(y|x) is considered

to be 0 whenever |y| 6= |x|.
In practice the weight vector ~λ is often obtained by maximizing the regularized log-likelihood

of a training set {(x1,y1), . . . , (xn,yn)}, that is, the weight vector is chosen to be

~λ∗ = arg max
~λ

[Πn
i=1 logP~λ(yi|xi)−

m∑
i=1

λ2

2σ2
]

, where σ controls the degree of regularization. Maximizing the likelihood favors models which fit
well with the training data, while regularization discourages models with exceptionally large λi’s.

Given a model P~λ∗ , one common way to predict the label sequence for any given observation
sequence x is to predict the most likely label sequence, that is, arg maxy P~λ∗(y|x). Another com-
monly used prediction method is to predict the label sequence (y1, . . . , y|x|) such that yi is the most
likely label at the ith position. Generally the first method performs better than the second one, and
we use the first method for all experiments done.

Learning and inference in CRF is generally intractable, but there are some interesting tractable
cases. In particular, one such case is the class of linear-chain CRFs, which are CRFs using only
features depending on at most two consecutive labels. There are various efficient algorithms for
learning and inference in linear-chain CRFs. In our experiments, inferring the marginal proba-
bilities are done using an analogue of the forward-backward algorithm used in HMM [27], and
inferring the most likely sequence is done using an analogue of the Viterbi algorithm in HMM
[27] as well. Learning is done by maximizing the regularized log-likelihood using the gradient-
based L-BFGS method [30], with the gradient computed using the marginal probabilities. Though
linear-chain CRFs only capture dependencies for at most two consecutive labels, they have been
found to be expressive enough for problems such as Parts of Speech (POS) tagging and Phrase
Chunking. In addition, they have been used in some relation extraction tasks with success as well
[3, 11]. The tractability and expressiveness of linear-chain CRFs make them suitable models for
initial investigation.

3.3.3 Models

We assume the data consists of sentences with the head words of the arguments labeled using
Arg1, Arg2 tags, and the other words labeled using O. We start with a basic CRF model with the
following features. The zeroth order features (features which depend on only one label) are listed
below:

34

• Current, previous, next word and its capitalization pattern;
• Words at most k positions before current word;
• Words at most k positions after current word;
• Combinations of word and capitalization patterns:
• n-grams in words.

The first-order features (features which depend on two consecutive labels) are listed below:

• Transition features without any observations;
• Transition features with first or second word or its capitalization pattern;
• Capitalization patterns for the two words.

When additional tags (such as Named Entity (NE) tags, POS tags) are available, we add the
current, next, previous tag and their combinations as additional zeroth order features.

Various models can be derived from the above basic model by adding new information, and/or
changing the way the dataset is used. The modifications that have been evaluated can be broadly
classified into three categories: handling imbalance of positive and negative examples, adding
additional tags, and adding long-range information to the labels. We list the modifications below.

Handling Dataset Imbalance

• BALANCE: Generally there are far more negative examples (sentences which containing no
relation instance) than positive examples. We remove a random subset of negative examples
to make the number of negative examples the same as the number of positive examples.

Adding Additional Tags

• NE: Add golden (human labeled) NE tags.
• POS: Add POS tags generated by the Stanford POS tagger 10.

Embedding Long-range Information into Labels

• RELABEL-NE: Relabel the sentences to remember the NE tags for the arguments by ap-
pending the NE tags to the current labels. For example, if the relation tags are O, Arg1,
O, Arg2, O, and the NE tags are O, PER, O, LOC, O, then the new relation tags are O,
Arg1-PER, O-PER, Arg2-LOC, O.
• RELABEL-ARGS: Relabel the sentences to remember the arguments that has appeared by

appending the list of arguments appeared to current labels. For example, O, Arg1, O, Arg2,
O is converted to O, Arg1-1, O-1, Arg2-12, O-12.

10http://nlp.stanford.edu/software/tagger.shtml

35

+ - Org-Aff Gen-Aff Part-Whole Art Phys Per-Soc All
Train 3418 12360 1764 640 924 640 1387 766 6121

2560 978 395 486 351 743 427 3380
Test 1472 5446 770 317 377 232 581 322 2599

1117 441 184 204 131 294 192 1446

Table 19: There are two rows for both train and test data, with the first for original dataset and
the second for the filtered dataset. The -/+ column is the number of negative/positive sentences
in the dataset (a sentence is positive if it contains a relation instance for any of the six relations).
Each entry in the next six columns shows the number of positive sentences for the corresponding
relation, where the bracketed number is the number of positive sentences containing at least two
instances for that relation. The last column shows the total number of relation instances.

• RELABEL-B: If the boundary of the noun phrases containing the arguments are given, then
we can again append the information that a boundary has been observed to the tags of words
within the noun phrases. Note that one argument can be contained in the other, thus for each
word in the noun phrases, we append the ordered list of boundaries that has been observed.
• TYING: After relabeling the dataset, O, Arg1, Arg2 have a few variants. These variants

should be considered to be the same in features which are intended to capture the same kind
of dependencies. For example, if we are interested to learn whether the word be should be a
non-argument, then

f(x,y, t) =

{
1, xt=be and yt=O;

0, otherwise.
and g(x,y, t) =

{
1, xt=be and yt=O-1;

0, otherwise.

should be treated equally and should have the same weight. Setting these features to share
the same weight is called parameter tying. In our experiments, we tie the parameters for
non-tag zeroth order features which uses variants of O.

3.3.4 Datasets

We evaluated the models in Section 3.3.3 on the ACE 2005 [34] corpus. The articles are drawn
from 6 different sources: bc (Broadcast Conversation), bn (Broadcast News), cts (Conversation
Telephone Speech), nw (Newswire), un (Usenet), wl (Weblog). There are six labeled relations:
PART-WHOLE, PHYS (located or near), ORG-AFF, (organizational affiliation), GEN-AFF (gen-
eral affiliation), PER-SOC (personal-social relation), ART (artifacts).

We construct the training and test data by putting the first 70% of the sentences from each
source into the training data and putting the remaining 30% into the test data. We then remove
sentences which contain at least two instances of the same relation from both the training and test
data. Table 19 shows statistics for the number of relation instances in the original dataset and the
filtered dataset.

36

All Art Gen-Aff Org-Aff Part-Whole Per-Soc Phys
BASE 24.28 12.33 12.56 35.52 17.36 41.51 6.27
BEST 53.92 49.12 45.60 64.46 55.12 54.95 44.79

Table 20: Best results obtained by adding BALANCE, POS, NE, RELABEL-NE to the baseline.

All Art Gen-Aff Org-Aff Part-Whole Per-Soc Phys
BEST 53.92 49.12 45.60 64.46 55.12 54.95 44.79

-BALANCE 48.82 37.93 36.00 62.66 42.76 56.03 35.59

Table 21: Effect of not balancing the negative examples.

3.3.5 Results and Discussions

We performed experiments using various combinations of the modifications described above, and
determine a best combination, then we study the effect of each modification by either removing it
from the best model (if it is used in the best model) or adding it to the best model (if it is not used
in the best model). We assumed that human-labeled entity type labels are available as the baseline
for analysis.

We measure the the F1 score, which is the harmonic mean of precision (number of correct
predicted relations over number of predicted relations) and recall (number of correct predicted
relations over number of true relations), that is, 2∗precision∗recall

precision+recall
.

Best Model BASE is the basic model in Section 3.3.3. The best model is the model obtained by
adding the combination of BALANCE, POS, NE, and RELABEL-NE to BASE. The F1 scores for
all relation types and for each relation relation type are shown in the table above. The performance
improvement in terms of the F1 for all relation types is about 30%.

Balancing Negative Examples It can be seen that balancing the dataset so that the number of
sentences without relations is the same as the number of sentences with relations is essential. Note
that balancing greatly reduces the dataset size and thus make learning much more efficient.

Entity Type and Part-of-speech Entity-type tags turned out to have a large impact on perfor-
mance. But POS tags have a minor effect.

All Art Gen-Aff Org-Aff Part-Whole Per-Soc Phys
BEST 53.92 49.12 45.60 64.46 55.12 54.95 44.79

-NE 30.62 21.19 23.72 37.79 30.66 38.63 22.22
-POS 53.35 48.46 46.57 63.85 55.30 52.69 44.16

Table 22: Effects of removing entity tags and part-of-speech tags.

37

All Art Gen-Aff Org-Aff Part-Whole Per-Soc Phys
BEST 53.92 49.12 45.60 64.46 55.12 54.95 44.79

-RELABEL-NE 41.61 36.00 34.84 53.70 36.48 49.18 30.69
+RELABEL-ARG 52.64 50.95 44.86 67.17 52.66 47.19 44.15

+RELABEL-B 52.35 41.24 45.07 64.56 53.58 52.39 42.67
+TYING 52.82 45.71 46.04 62.71 55.58 52.61 44.22

Table 23: Effects of storing information in the tags.

All Art Gen-Aff Org-Aff Part-Whole Per-Soc Phys
BEST 53.92 49.12 45.60 64.46 55.12 54.95 44.79

+TrainedNE 38.98 29.60 35.47 46.60 35.20 46.31 31.97
+CorrectedNE 39.44 32.26 36.25 47.26 36.08 46.04 31.07

+CLASSIFIER 63.77 54.90 59.86 70.94 63.44 67.48 56.13

Table 24: Performance of using trained instead of human-labeled and effect of perfect classifier.

Storing Long Distance Information in the Tags By storing the entity type in the tag of the first
argument, the second argument can be matched using the correct type. This has a large effect on
performance as seen by the effect of removing it from the best model. On the other hand, adding
even more information about the order of the argument and noun phrase boundaries appears to
cause overfitting. However, we also found when RELABEL-NE is not used, RELABEL-ARGS
and RELABEL-B improves performance, so these labels do contain useful information. Parameter
typing does not seem to affect the performance much in this case, but it should be noted that it
is still an important consideration in model design, and is essential if there are many important
features which are semantically the same.

Effects of Human-Labeled Entity Tags and Classifier Using a trained entity tagger in place of
human labels degraded performance significantly. This indicates that improving the entity tagger is
one way to improve performance. One of the difficulties in tagging entities is deciding the tags of
pronouns. This may require the use of co-reference. To test the importance of this, we use human
labeled tags for pronouns and retain the machine tags for the other entities (CorrectedNE). The
relative performance of TrainedNE and CorrectedNE suggests that using coreference resolution
to build a better NE tagger may not be very helpful. We also investigated using human provided
information on the presence (and type) of relation in the sentence in the form of a classifier. The
performance of CLASSIFIER is about 10% better than BEST, and this suggests a possible avenue
to gain performance improvement.

38

Peter and Bush are working for IBM .

ORG-AFF ORG-AFF

3.4 Exploiting Tree Structures
3.4.1 Motivation

Relation extraction from a sentence is closely related to dependency parsing for a sentence: NLP
dependencies can be viewed as binary relations, and thus dependency parsing can be thought of
as a special type of relation extraction task; In addition, it often happens that the set of relations
in a sentence is one-to-one or one-to-many, which is a characteristic that motivated the concept of
dependency tree. This motivates us to formulate the problem of relation extraction as learning and
prediction of tree structures from a partial set of observed edges, as described below.

A sentence and the relations present in it can be visualized as a directed graph with labeled
edges: Each NE and each other word is a node, and there is an edge from the first argument to the
second argument for each relation instance. The graph for the simple sentence Peter and Bush are
working for IBM. is shown below.

The above graph can be viewed as a subgraph in the complete weighted directed graph on the
same set of nodes, with a labeled weighted edge for each pair of nodes and each possible relation,
where the weight of an edge indicates the strength of the evidence supporting the edge label.
Extracting relations can then be considered as searching for an optimal edge weight assignment
scheme and searching for an optimal subgraph in the complete weighted directed graph.

3.4.2 Model

To reduce the complexity of searching for an optimal subgraph, we make the assumption that there
are hidden binary relations between the nodes, which form a directed spanning tree together with
the observed relation edges. This assumption only allows one-to-many relations to be considered,
but is generally valid at the sentence level as mentioned above. In Figure 3.4.1, we orient the edge
so that it points to the employee, then this encodes the assumption that one person is affiliated with
one organization only, which is not always but generally true.

Edge weight assignment is done using a set of weighted features of the form f(s, i, j, l), where
s denotes a sentence, and (i, j, l) is a labeled edge, with i, j, l being the index of the head, the index
of the tail, and the label respectively. An example feature is

f(s, i, j, l) =

{
1, s(i) = Peter ∧ s(j) = IBM ∧ l = ORG− AFF ;

0, otherwise.

where s(i) denotes the i-th node of s. Let f1, . . . , fm be the set of features chosen, and λ1, . . . , λm
the corresponding weights. Let ~F (s, i, j, l) = (f1(s, i, j, l), . . . , fm(s, i, j, l)), and ~λ = (λ1, . . . , λm),
then the weight ω(e) of a labeled edge e = (i, j, l) is defined to be exp(~λ· ~F (s, i, j, l)). We shall use
Gs to denote the complete weighted directed graph constructed for a sentence s. A set of relation

39

on s is a set of labeled edges on Gs. The set of relations in s is denoted by Rs, which is a subset of
edges of Gs.

Optimal feature weight vector is chosen by maximizing a probability parameterized by ~λ, as
described below. Define the weight ω(T) of a spanning tree T in Gs as Πe∈Tω(e). Let T (Gs)
denote the set of spanning trees on Gs, and define the probability of T ∈ T (Gs) as

P~λ(T |s) =
ω(T)∑

T ′∈T (Gs) ω(T ′)

For a set of relation R, we say a spanning tree of Gs is consistent with R if it contains all edges
in R but with all other edges being a non-relation edge. Let T (Gs, R) be the set of spanning trees
of Gs consistent with R. Define the probability

P~λ(R|s) =
∑

T∈T (Gs,R)

ω(T)/
∑

T∈T (Gs)

ω(T)

If the training examples are S = {(s1, Rs1), . . . , (sn, Rsn)}, then the optimal weight vector ~λ∗

is chosen to be
~λ∗ = arg max

~λ
L~λ(S)

where L~λ(S) =
∑

(Rs,s)∈S lnP~λ(Rs|s)−
∑m

i=1
λ2i
2σ2 is the regularized log-likelihood of S. The

regularization term
∑m

i=1
λ2i
2σ2 is used to prevent overfitting, with σ being a parameter chosen to

control the tradeoff between model complexity (as measured by the regularization term) and how
well the model fits to training examples.

Efficient training and prediction algorithms are given in Appendix 1.

3.4.3 Variants

In the above discussion, we only consider directed graphs. The same technique can be used to to
model tree structures over undirected graphs, with some minor changes. We leave out the technical
details here.

Since we are mainly interested to learn the relations between the named entities, we can also
choose only the NEs rather than all the phrases as the nodes of the graphs.

Though the tree model may capture the structure of the relations in the graphs, this is only
an approximation as not all relations form a tree in practice. In contrast, previous classification
approach does not assume any structure in the relations in the graphs. We combine both approaches
to form a hybrid model as follows: A tree model and a classifier are trained separately, but for
decoding, a tree is first obtained using the tree model, then high-confidence edges predicted using
the classifier are also included.

40

3.5 Exploiting Long-range Dependencies
3.5.1 Motivation

For relation extraction from plain text alone, especially in a new domain without a good parser,
we may need to do both segmentation and argument identification jointly. Thus, sequence labeling
models such as linear Conditional Random Field [19] (CRF) or semi-Markov Conditional Random
Field [29] would be useful for the task. However, both linear CRF and semi-Markov CRF have
a major drawback: they cannot capture the long-range dependencies or the label patterns of the
input sequence. Consider again the example in previous section: Peter is working for IBM. The
label pattern Arg1+ O+ Arg2+ will be learned from this example, and this pattern says that Arg1’s
should be followed by some O’s, then some Arg2’s. This can be useful to avoid label sequences
such as Arg1+ O+ Arg1+. Such information cannot be captured in linear CRFs and semi-Markov
CRFs.

In this section, we extend the semi-Markov Conditional Random Field to include high-order
semi-Markov features which depend on two or more previous segment labels. We use techniques
similar to the algorithms in [35] to train and predict the labels. As in [35], we also make the pattern
sparsity assumption, that is, the number of observed segment label patterns of length k is much
smaller than |Y|k, where Y is the set of all labels in the model.

Relation extraction is casted as sequence labeling in a slightly different way as compared with
the method in Section 3.3. If a word in a sentence is the first argument of a relation, we tag it as
Arg1. If it is the second argument, we tag it as Arg2. If the word is the first argument of a relation
and it is also the second argument of another relation of the same type, we tag it as Arg1Arg2.
Otherwise, we tag it as O, which means the word is not part of any relation.

After the arguments are identified, we construct all Arg1-Arg2 pairs, and use a trained classifier
to predict whether each of them is a true relation. The subset of relations predicted to be true is
output as the relations. This classification step is not present in the approach in Section 3.3.

The classifier is trained using the training data by splitting it into two equal halves, then one
tagger is trained for each partition, and then used to generate all candidate relations (triplets of
Arg1-Arg2-type) on the other partition as in Section 3.3. These candidate relations are tagged as
true or false using the true relation instances in the training data. This set of tagged candidate
relations is the training set for the classifier.

3.5.2 Model

Let s = (s1, . . . , sp) be a segmentation of an input sequence x, where each sj = (uj, vj, yj) is a
segment, consisting of start position uj , end position vj , and label yj ∈ Y . Assume we have m
features f1, . . . , fm, and each feature fi is associated with a segment label pattern zi such that

fi(x, s, t) =

{
gi(x, ut, vt) if yt−|zi|+1 . . . yt = zi

0 otherwise

41

+ - Org-Aff Gen-Aff Part-Whole Art Phys Per-Soc All
Train 3418 12360 1764 640 924 640 1387 766 6121

Directed 3123 3418 1535 544 780 487 1053 678 5077
Undirected 3400 3418 1743 634 909 630 1351 752 6019

Table 25: First row shows statistics for the original training data. Second row and third row
show statistics after filtering non-forest examples, when directions are considered and ignored,
respectively.

A high-order semi-CRF is defined as

P (s|x) =
1

Zx

exp(
m∑
i=1

|s|∑
t=1

λifi(x, s, t))

where Zx =
∑

s exp(
∑m

i=1

∑|s|
t=1 λifi(x, s, t)).

Efficient training and prediction algorithms are given in Appendix 2.

3.6 Experiments
We study the effects of modeling the tree structures and high-order semi-Markov features on the
ACE 2005 corpus.

As in Section 3.3, we construct the training and test data by putting the first 70% of the sen-
tences from each source into the training data and putting the remaining 30% into the test data.

3.6.1 Tree Structures

In this section, we compare the effectiveness of the classification approach (using a MaxEnt clas-
sifier), the tree model, and the hybrid model, using the same set of features. The comparison
demonstrates that modeling the structure for the relations can be useful.

As in Section 3.3, for all three models, we first randomly balance the number of positive and
negative examples so as to speed up training and improve performance. For the tree models, we
then remove non-forest examples from the training data. The statistics for the processed data is
shown in Table 25.

We list the features used. Uni-gram features include: words in the phrase, the phrase itself,
POS tags for the words in the phrase, POS tag sequence for the phrase, NE tag of the phrase,
previous and next ith phrases (1 ≤ i ≤ 3). Bi-gram features include: combination of the phrases,
combination of the NE tags, combination of the POS tags, prepositions between the two phrases,
whether there is any entity between the two phrases, and whether there is any entity of the same
type as the first/second phrase between the two phrases.

For each model, either true NE tags or predicted NE tags may be used, the directions of relations
may be kept or ignored, and the candidate arguments considered may be only the NEs or all
phrases. This gives 8 test settings for each model. The performance of the three models under
these setttings are shown in Table 26.

42

Directed MaxEnt Tree Hybrid
TrueNE NE 60.45/46.98/52.87 53.64/53.91/53.77 60.61/49.90/54.74

Phrases 59.22/46.94/52.37 55.58/52.14/53.80 61.10/49.79/54.87
TrainedNE NE 56.08/31.78/40.57 49.50/36.44/41.98 56.87/34.40/42.87

Phrases 57.06/32.67/41.55 46.14/39.28/42.44 55.11/34.86/42.71
Undirected

TrueNE NE 61.11/51.77/56.05 55.59/57.78/56.66 60.70/54.04/57.18
Phrases 59.41/51.89/55.39 53.96/59.85/56.75 59.47/54.85/57.07

TrainedNE NE 55.66/35.51/43.36 50.75/39.18/44.22 55.49/37.48/44.74
Phrases 53.38/36.05/43.04 46.48/41.38/43.79 53.90/37.67/44.35

Table 26: Precisions, recalls and F1 measures for the three approaches.

Part-Whole Phys Org-Aff Gen-Aff Per-Soc Art Average
SemiCRF 38.51 33.40 60.78 31.35 53.46 40.07 42.92

High-order SemiCRF 42.76 42.00 64.08 35.38 57.29 48.79 48.38

Table 27: Argument detection F1 scores for semiCRF tagger and high-order semiCRF tagger

It can be seen that for all cases, in terms of F1, the hybrid model is the best, followed by the
tree model, then followed by classifier model. The classifier model has higher precision but lower
recall than the tree model. The hybrid model’s precision and recall are in between those of the
classifier model and the tree model.

3.6.2 High-order Semi-Markov Features

For both first-order and high-order semiCRFs, we use the following set of zeroth order features:
current, previous, next word and its capitalization pattern; words at most k positions before and
after the current word; combinations of word and capitalization patterns; n-grams in words; cur-
rent, previous, next NE tags and their combinations; current, previous, next POS tags and their
combinations. We also use the following set of first-order features: transition features without
any observation, transition features with first or second words or its capitalization pattern, capital-
ization patterns for the two words. Additionally, we include the second-order transition features
without observation to the high-order semi-Markov CRF tagger. The F1 scores of the semi-Markov
CRF tagger and high-order semi-Markov CRF tagger on the test set are shown in Table 27.

Using a slightly different train-test partition, we demonstrated that high-order semi-Markov
features can capture additional long-range dependencies as compared with first-order semi-Markov
features. We showed that high-order semiCRF performs better than first-order semiCRF in in terms
of the F1 scores for argument detection. This is reported in [24], and we reproduce the scores
below.

The table above shows that high-order semi-CRF performs better than semi-CRF for all relation
types, thus high-order transition features can capture some additional long-range dependencies.

We also evaluated the semiCRF’s performance in terms of relations identified. As described in

43

CRF SemiCRF
TrueNE Before 47.43/47.94/47.68 33.85/49.40/40.18

After 65.49/40.75/50.24 63.59/39.25/48.54
TrainedNE Before 42.02/36.00/38.78 30.59/37.27/33.61

After 61.13/29.61/39.90 62.36/28.84/39.44

Table 28: Precisions, recalls, and F1s for the linear-chain CRF and the high-order semiCRF

Section 3.5, we need to build a classifer that predicts whether a candidate relation output by the
semiCRF is a true relation. We build a MaxEnt classifier C using the features described below.
For a candidate relation (a1, a2, t), where a1, a2 and t are first argument, second argument and
the relation type of the candidate instance, we construct the following features: a1 + t, a2 + t,
a1 + a2 + t, n1 + t, n2 + t, n1 + n2 + t (n1 and n2 are the entity types of a1 and a2 respectively), a
feature indicating whether the candidate relation is predicted by both T and F , w+ t for all words
w between the arguments, probability of the candidate relation as measured by the tree model, the
entity type distribution for the arguments according to the NE tagger trained on the training data.

For prediction on a set of candidate relations, C uses a method which is different from the usual
classification rule which outputs the most likely labels. Instead, C first compute for each candidate
relation the probability that it is positive . Then choose n such that classifying the top n candidates
results in the largest expected F1 (see [7] for details), and classify the top n candidates as positive.
We simply remark that our experiments showed that this is better than the usual classification rule
here.

Note that this classification step can be applied to the linear chain CRF model trained as de-
scribed in Section 3.3 as well. Table 28 shows the scores of both linear chain CRF and high-order
semiCRF using true NE tags or predicted NE tags, before applying the classification step and after
the classification step.

The classification step improves the precisions significantly, but lowers the recalls. Note that
the linear chain CRF has relatively good performance because it remembers the NE tags of the first
argument seen in the labels, while high-order semiCRF only remembers the transition patterns.

3.6.3 A Combined Model

For the method of first generating candidate relations then classifying them, we can certainly con-
sider candidate relations generated using models other than CRFs. We construct a combined sys-
tem by using as candidate relations all the relations output by the classifier models, the tree models,
the hybrid models (considering relation directions, but either using NEs or all phrases as possible
arguments), and the candidate relations output by the linear-chain CRF and the semiCRF. That is,
we use 8 different sets of outputs to form a candidate relation set. We then apply the classification
step as in the above experiments.

Table 29 shows the precision, recall and F1 of the combined system. The precision, recall and
F1 score of the combined model are better than or at least comparable to all the above models.

We also remark that our evaluations on other combinations of the outputs show that classifica-
tion on the outputs of the classifier models, the tree models, or the hybrid models alone generally

44

TrueNE TrainedNE
Combined 64.64/53.87/58.76 61.09/38.51/47.24

Table 29: Precisions, recalls and F1 scores for the combined model.

do not lead to better performance. In addition, using all of the 8 different sets of outputs leads to
better performance for both the cases of using true NE tags and predicted NE tags.

3.7 Conclusion
We highlight a few important factors and difficulties for building an effective relation extraction
system for plain texts.

A useful observation is that our results showed that combining the outputs of several different
systems can be useful. Thus it can be useful to build an ensemble of systems which capture
different information, and then combine the outputs of these ensembles.

From the perspective of breaking RE as a pipeline of tasks which are intuitively simpler, our
analysis shows that we will be able to improve performance if we can classify whether a relation
(and the type) is present in a sentence. However, our experience suggests that detecting whether a
sentence contains a relation instance is not necessarily easier than extracting the relation instances
together with their types.

Regarding the information useful for RE, typical systems often incorporate information from
NE recognition, POS tagging, phrase chunking, and parsing. For relations which can be distin-
guished by the NE types of the arguments (for example, the organization-affiliation relation is
between people and organizations, and the personal-social relation must be between people), NE
tags are certainly very useful. A typical relation extraction system is often constructed as a pipeline
in which the first step is NE recognition, then followed by discovering relations between the NEs.
Our results have shown that NE tags is one of the most important features for relation extraction.
POS tags are also useful, while parse trees and phrase tags are harder to use and generally do
not yield much improvements. In addition, parse trees can contain a lot of errors for informal
texts, such as those in bc, cts. Exploiting shallow syntactic information is easier and may often be
sufficient.

Relations can also be hard to extract because of the complex structures and rich semantics of
natural languages. An example of difficulties with complex structurs is a sentence like “A, who ...,
is the father of B”, which can make the relation “A is the father of B” difficult to extract by making
the who clause complicated. An example of difficulties with rich semantics is the phrase structure
“A of B”, which can be used to express various relations, as in “a packed room of 200 intelligent,
practical, driven idealists” (PHYS), “a student of Plato” (PER-SOC), “president of IBM” (ORG-
AFF). While features remembering the exact words can be used to solve these cases once they
are seen, it appears that there are no automatically constructed simple features can lead to good
performance on the underlying general cases.

While the basic units of information used can be the same (such words, their POS tags, NE
tags), modeling additional structures between the relations can be useful. For example, the tree
model allows the relations to compete with each other, which can lead to more accurate feature

45

weights, and this may be the reason why it has better performance than the classifier approach.
Using high-order semi-Markov features allows us to capture some useful long-range dependencies.
However, so far we can only use semiCRF to identify the relation arguments, and extraction of the
relations requires an additional step of pairing up the arguments using a classifier. The later step
does not appear to be easy.

Certainly, RE at the document level, while more difficult, is more interesting and useful in prac-
tice. Additional document level analysis, such as coreference resolution and discourse analysis, are
expected in this case. We have not studied this yet.

46

Appendix A Algorithms for the Tree Model
This section presents an efficient training algorithm for the tree model (that is, determining the
optimal feature weights ~λ∗) and an efficient algorithm for making predictions on given sentences
using a given model.

A.1 Training
We can make use of standard gradient descent technique, like the L-BFGS algorithm [21], to
solve the optimization problem arg max~λ L~λ(s1, . . . , sn). This requires efficient computation of
the value and gradient of L~λ as a function of λ. Both can be done efficiently by exploiting the
matrix tree theorem, which expresses the total weight of spanning trees of a directed graph as the
determinant a simple matrix. We shall first introduce the matrix tree theorem, and derive a few
consequences of it.

A.1.1 Matrix Tree Theorem and Consequences

Throughout this section,G = (V,E, ω) denotes a weighted directed graph, where V = {1, 2, . . . , n},
E = {(i, j, l) : 1 ≤ i, j ≤ n, 1 ≤ l ≤ L} (L is the number of distinct labels), and ω : E → R. We
only consider graphs with the following restrictions: (a) ω is log-linear, that is, there exists some
~λ ∈ Rm and a function ~F : E → Rm such that for all i, j, l, ω(i, j, l) = exp(~λ · ~F (i, j, l)); (b)
ω(i, i, l) = 0 for all i, l; (c) The labels 1, . . . , L are partitioned into two categories: relation labels
and non-relation labels.

We shall use wijl to denote ω(i, j, l), and wij to denote
∑L

l=1 wijl. The Laplacian L(G) of G

is the matrix such that its (i, j)-th entry is L(G)(i, j) =

{
−wij, i 6= j;∑n

k=1wkj, i = j.
. The determinant,

inverse and transpose of a matrix A is denoted by |A|, A−1 and AT respectively. The (i, j)-minor
of A, that is, the matrix obtained by deleting the i-th row and the j-th column of A, is generally
denoted by Aij .

P1.Sum of all spanning trees

Theorem 1. (Matrix tree theorem) ([32],p140) The total weight of all spanning trees of G with
node m as the root node is (−1)k+m|L(k,m)(G)|, where k is any of 1, . . . , |V |, and L(k,m)(G) is the
(k,m)-minor of L(G).

As a simple corollary of the matrix tree theorem, we have the following.

Corollary 2. Suppose 1 ≤ i ≤ |V |. Let L(i)(G) be the matrix obtained by replacing the i-th row
of L(G) with all 1’s, then |L(i)(G)| is the total weights of all spanning trees of G.

Since the determinant of a k×k matrix can be computed inO(k3) time using Gaussian elimina-
tion, the above theorem leads to an O(|V |3) time algorithm to find the total weight of all spanning
trees.

47

P2.Sum of all spanning trees consistent with given relation edges
We give two algorithms to compute

∑
T∈T (G,R) ω(T) for a set of relation edges R that form

a directed forest. An edge (i, j, l) of G is said to be consistent with R if (i, j, l) ∈ R, or l is a
non-relation label and there is no l′ such that (i, j, l′) ∈ R. Let G|R denote the subgraph of G
containing all and only edges consistent with R. G|R is called the consistency graph for (G,R).

Theorem 3.
∑

T∈T (G,R) ω(T) =
∑

R′⊆R(−1)|R
′|∑

T∈T (G|R−R′) ω(T).

Proof. Note that
∑

T∈T (G|R) ω(T)−
∑

T∈T (G|R−R′) ω(T) is the total weight of spanning trees con-
taining at least one edge fromR′ and with all other edges being non-relation edges. Apply the prin-
ciple of inclusion-exclusion and simplify the expression, then we obtain the above formula.

The above theorem leads to an O(2|R||V |3) algorithm to compute
∑

T∈T (G,R) ω(T). Though
not a polynomial time algorithm, it is generally efficient enough in practice, as the number of
relations in a sentence is usually quite small. There is in fact a simple polynomial time algorithm
based on edge contraction, as shown in Algorithm 1.

Algorithm 1 Algorithm for total weight of consistent spanning trees
Input: G,R.
Output:

∑
T∈T (G,R) ω(T).

1: Construct G|R;
2: Construct G′ with nodes v1, . . . , v|V | such that vi = {i}, and for every edge (i, j, l) in G|R,

there is a corresponding edge (vi, vj, l) with the same weight;
3: W = 1;
4: for each edge (i, j, l) in R do
5: Identify the nodes u, v ∈ G′ such that i ∈ u and j ∈ v;
6: W = W · ω(i, j, l);
7: Remove all incoming edges on v;
8: For each edge (v, t, l′), where t 6= u, create an edge (u, t, l′) with the same weight as (v, t, l′),

and delete (v, t, l′);
9: return W ·

∑
T∈T (G′) ω(T).

The above idea can be implemented using simple arithmetic operations on matrices, rather
than explicitly performing operations on a graph. To be precise, it can be used to find a |V | × |V |
matrix S = (sij such that |S| =

∑
T∈T (G,R) ω(T). We shall call S a tree sum matrix for (G,R).

Algorithm 2 shows how S can be constructed. In addition, we construct a |V | × |V | × L array

C such that C(i, j, k) =

{
ω(i, j, k) (i, j, k) is in a spanning tree of G consistent with R;

0 otherwise;
, which

we call the consistency matrix for (G,R).

P3.Gradients of
∑

T∈T (G) ω(T) and
∑

T∈T (G,R) ω(T) with respect to ~λ

48

Algorithm 2 Construction of the consistency matrix and the tree sum matrix
Input: ω, R
Output: S, C as described above.
1: For each (i, j, l), set C(i, j, l) and A(i, j, l) to be ω(i, j, l) if (i, j, l) ∈ G|R, and 0 otherwise;

2: Set id(i) = i for all node i;
3: for (i, j, l) ∈ R do
4: contract((i, j, l), C, A);

5: Let S be the Laplacian of the matrix with its (i, j)th entry being
∑

lA(i, j, l).
6: Find the smallest r such that id(r) = r;
7: Set S(r, j) = 1 for each j such that id(j) = j;

procedure contract((i, j, l), C, A)

1: Set C(i′, j, l′) = 0 for all i′, l′ such that i′ 6= i or l′ 6= l;
2: Set C(j′, i′, l′) = 0 for all i′, j′ such that id(i′) = id(i) and id(j′) = id(j), and for all l′;
3: Set A(i′, j, l′) = 0 for all i′, l′;
4: A(id(i), k, l′) = A(id(i), k, l′) + A(j, k, l′) for all l and all k 6= id(i);
5: Set A(j, k, l′) = 0 for all k, l′;
6: A(j, j, l) = C(i, j, l);
7: Set id(j′) = id(i) for all j′ with id(j′) = id(j);

A consequence of Algorithm 2 is that both
∑

T∈T (G) ω(T) and
∑

T∈T (G,R) ω(T) can be written
as the determinant of a matrix of the form (w′ij) where w′ij is the sum of a few edge weights of
G. We describe how to find the gradient of a sum of spanning tree weights expressible in such
determinant form. Let TP (G) be the set of spanning trees of G satisfying some property P . Let
S(G) =

∑
T∈TP (G) ω(T) and suppose S(G) = |(w′ij)| for some |V | × |V | matrix (w′ij), with each

w′ij being the sum of a few edge weights of G. Let ~F (i, j, l) = (f1(i, j, l), . . . , fm(i, j, l)). Note

that
∂ω(T)

∂wijl
wijl =

{
ω(T), (i, j, l) ∈ T ;

0, (i, j, l) /∈ T.
, and

∂wijl
∂λk

= wijlfk(i, j, l). Thus we have

∂ω(T)

∂wijl

∂wijl
∂λk

=
∂ω(T)

∂wijl
wijlfk(i, j, l) =

{
ω(T)fk(i, j, l), (i, j, l) ∈ T ;

0, (i, j, l) /∈ T.

∂S(G)

∂λk
=

∑
T∈TP (G)

∂ω(T)

∂λk
=
∑
i,j,l

∑
T∈TP (G)

∂ω(T)

∂wijl

∂wijl
∂λk

=
∑
i,j,l

∑
T∈TP (G),(i,j,l)∈T

ω(T)fk(i, j, l)

Since
∑

T∈TP (G),(i,j,l)∈T ω(T) =
∑

T∈TP (G) ω(T) −
∑

T∈TP (G−(i,j,l)) ω(T) = S(G) − S(G −
(i, j, l)), we can thus use the assumption that S(G) is the determinant of a |V | × |V | matrix to
compute

∑
T∈TP (G),(i,j,l)∈T ω(T) for all i, j, l, in time O(|V |2L× |V |3).

As described in [18], there is a much more efficient algorithm, which takes only O(|V |3) time
if each w′ij is the sum of at most some constant number of edge weights of G. This is based

49

on the fact that for W = (w′ij) (with the w′ij’s being viewed as independent variables), we have
∂|W |
∂w′ij

= (−1)i+jWij (obtained using expansion by minor) and W−1 =
1

|W |
((−1)i+jWij)

T (the

standard formula for the inverse of a non-singular matrix). Hence we have the following

∂S(G)

∂λk
=
∂|W |
∂λk

=
∑
i,j

∂|W |
∂w′ij

∂w′ij
∂λk

=
∑
i,j

(−1)i+jWij

∂w′ij
∂λk

= |W |
∑
i,j

W−1
ji

∂w′ij
∂λk

Each
∂w′ij
∂λk

can be efficiently computed as w′ij is the sum of a few edge weights of G, thus by

first computing W−1 (in O(|V |3) time using Gaussian elimination), we can then find out
∂S(G)

∂λk
efficiently.

For the case when S(G) is
∑

T∈T (G) ω(T), we can chooseW = L(1)(G), thenw′ij =

1, i = 1;∑

i′,l wi′jl, i = j > 1;

−
∑

l wijl, i > 1 ∧ i 6= j.

,

thus we can compute
∂S(G)

∂λk
values easily.

For the case when S(G) is
∑

T∈T (G,R) ω(T), there is a simple algorithm to compute all
∂S(G)

∂λk
values using the tree sum matrix S, the consistency matrix C, and id in Algorithm 2. From
∂S(G)
∂λk

=
∑

i,j,l

∑
T∈TP (G),(i,j,l)∈T ω(T)fk(i, j, l), we have ∂S(G)

∂λk
= S(G)

∑
i,j,l P (i, j, l)fk(i, j, l),

where µ(i, j, l) is the marginal probability that (i, j, l) is included in a spanning tree satisfying
property P , which is

∑
T∈TP (G),(i,j,l)∈T ω(T)/S(G). In addition, it can be shown that µ(i, j, l) =

[(1− δr,id(j))S
−1
id(i),id(i))− (1− δr,id(i))S

−1
id(j),id(i)]C(i, j, l), where δi,j is the Dirac delta function.

A.1.2 Computing Regularized Log-likelihood

Computing the function value requires computation of
∑

T∈T (Gs) ω(T) and
∑

T∈T (Gs,R) ω(T),
which can be done efficiently using the method described in previous section.

A.1.3 Computing Gradient

The main difficulty in computing the gradient of L~λ lies in computing partial derivatives of the
form ∂ lnP~λ(Rs|s)

∂λi
. This expression can be rewritten in the following form.

∂ lnP~λ(Rs|s)
∂λi

=
∂[ln

∑
T∈T (Gs,Rs) ω(T)− ln

∑
T∈T (Gs) ω(T)]

∂λi

=
1∑

T∈T (Gs,Rs) ω(T)

∂
∑

T∈T (Gs,Rs) ω(T)

∂λi
− 1∑

T∈T (Gs) ω(T)

∂
∑

T∈T (Gs) ω(T)

∂λi

Now we can apply the results in previous section directly to compute the gradients.

50

A.2 Decoding

Given a sentence s and a trained model with parameter ~λ∗, we find the directed maximum spanning
tree on Gs using the Chu-Liu’s algorithm [9], and output the relation edges on the maximum
spanning tree as predicted relations.

Appendix B Algorithms for High-order Semi-Markov CRF
In this section, we present efficient algorithms for training and inference for high-order semi-
Markov CRF.

B.1 Notations
We use Z to denote the segment label pattern set {z1, . . . , zM}, which is the set of distinct
segment label patterns of the m features. The forward-state set P = {p1, . . . ,p|P|} = Y ∪
{zj1:k}0≤k<|zj |,1≤j≤M consists of all the labels and proper prefixes of the segment label patterns.
And, the backward-state set S = {s1, . . . , s|S|} = PY consists of the elements of P concatenated
with a label in Y , with duplicates removed. As in [35], we also make use of the longest suffix
relation z1 ≤sA z2 on a set A, which is true if z1, among all the elements of A, is the longest suffix
of z2.

B.2 Training
Given a training set T , we maximize the regularized log-likelihood

LT =
∑

(x,s)∈T logP (s|x)−
∑m

i=1
λ2i
2σ2

We describe below the algorithms to compute all the necessary components of LT and its partial
derivatives

∂LT
∂λi

= Ẽ(fi)− E(fi)−
λi
σ2

B.2.1 Partition Function

Let pj,pi be the set of all partial segmentations starting from 1 to j which contain pi as the longest
suffix. We define the forward variables αx(j,pi) as follows

αx(j,pi) =
∑

s∈pj,pi

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t))

Let Ψx(u, v,p) = exp(
∑

i:zi≤sp λigi(x, u, v)) and L be the longest possible length of a segment.
We can compute αx(j,pi) by

αx(j,pi) =
L−1∑
d=0

∑
(pk,y):pi≤sPpky

Ψx(j − d, j,pky)αx(j − d− 1,pk)

51

The partition function can now be computed by Zx =
∑

pi αx(|x|,pi). The time complexity to
compute all the values of Ψx is O(mT 2|Y||P|). After computing all the values of Ψx, we can
compute all the values of αx in O(T 2|Y||P|) time.

B.2.2 Expected Feature Sum

Let sj,si be the set of all partial segmentations starting from j to |x| whose longest previous pattern
is si. The backward variables βx(j, si) are defined as

βx(j, si) =
∑

s∈sj,si

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t))

We can compute βx(j, si) by

βx(j, si) =
L−1∑
d=0

∑
(sk,y):sk≤sSsiy

Ψx(j, j + d, siy)βx(j + d+ 1, sk)

Let P (u, v, z|x) be the marginal probability that (u, v) is a segment and its label pattern is z. We
can compute P (u, v, z|x) by

P (u, v, z|x) =
1

Zx

∑
(pi,y):z≤spiy

αx(u− 1,pi)Ψx(u, v,piy)βx(v + 1,piy)

The model expectation for feature fi is:

E(fi) =
∑

(x,s)∈T

∑
u≤v

P (u, v, zi)gi(x, u, v)

Similar to computing αx, the time complexity to compute all the values of βx is O(T 2|Y||S|).
After computing all the values of Ψx, αx, and βx, we can compute all the marginal probabilities in
O(T 2|Z||P|) time.

B.3 Inference
We use a Viterbi-like algorithm for calculating the most likely label sequence. In this algorithm,
we define δx(j,pi) as follows

δx(j,pi) = max
s∈sj,pi

exp(
m∑
k=1

|s|∑
t=1

λkfk(x, s, t))

We can compute δx(j,pi) by using dynamic programming

δx(j,pi) = max
(d,pk,y):0≤d≤L−1∧pi≤sPpky

Ψx(j − d, j,pky)δx(j − d− 1,pk)

The best segmentation can be traced back from maxpi δx(|x|,pi). The time complexity for decod-
ing is O(T 2|Y||P|).

52

References
[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large plain-text

collections. In Proceedings of the Fifth ACM Conference on Digital Libraries, pages 85–94,
June 2000.

[2] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853,
November 2005.

[3] Michele Banko and Oren Etzioni. The tradeoffs between open and traditional relation ex-
traction. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics, pages 28–36, 2008.

[4] Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Raymond J. Mooney,
Arun K. Ramani, and Yuk Wah Wong. Comparative experiments on learning information
extractors for proteins and their interactions. Artif. Intell. Med., 33(2):139–155, 2005.

[5] Razvan Bunescu and Raymond Mooney. A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Human Language Technology Conference and the Conference
on Empirical Methods in Natural Language Processing, pages 724–731, 2005.

[6] Xavier Carreras and Lluı́s Màrques. Introduction to the conll-2004 shared task: Semantic
role labeling. In Proceedings of CoNLL-2004, pages 89–97. Boston, MA, USA, 2004.

[7] Kian Ming Adam Chai. Expectation of f-measures: tractable exact computation and some
empirical observations of its properties. In Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR ’05, pages
593–594, New York, NY, USA, 2005. ACM.

[8] Stanley Chen and Joshua Goodman. An empirical study of smoothing techniques for lan-
guage modeling. Technical Report TR-10-98, Harvard University, 1998.

[9] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400, 1965.

[10] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in
Neural Information Processing Systems 14. 2002.

[11] Aron Culotta, Andrew McCallum, and Jonathan Betz. Integrating probabilistic extraction
models and data mining to discover relations and patterns in text. In Proceedings of the
Human Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics, pages 296–303, June 2006.

[12] Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation extraction. In
Proceedings of the 42nd Meeting of the Association for Computational Linguistics, pages
423–429, 2004.

53

[13] Ralph Grishman, Silja Huttunen, and Roman Yangarber. Information extraction for enhanced
access to disease outbreak reports. J. of Biomedical Informatics, 35(4):236–246, 2002.

[14] Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman. Discovering relations among
named entities from large corpora. In Proceedings of the 42nd Meeting of the Association for
Computational Linguistics, pages 415–422, July 2004.

[15] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the deep web.
Commun. ACM, 50(5):94–101, 2007.

[16] Jing Jiang. Multi-task transfer learning for weakly-supervised relation extraction. In Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of the AFNLP, pages 1012–1020,
Singapore, August 2009.

[17] Jing Jiang and ChengXiang Zhai. A systematic exploration of the feature space for relation
extraction. In Proceedings of the Human Language Technologies Conference, pages 113–
120, 2007.

[18] Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. Structured prediction
models via the matrix-tree theorem. In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 141–150, 2007.

[19] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th
International Conference on Machine Learning, pages 282–289, June 2001.

[20] Yaliang Li, Jing Jiang, Hai Leong Chieu, and Kian Ming A. Chai. Extracting relation descrip-
tors with modified conditional random fields. In Proceedings of the 5th International Joint
Conference on Natural Language Processing of the AFNLP. Association for Computational
Linguistics, 2011.

[21] D. C. LIU and J. NOCEDAL. On the limited memory BFGS method for large scale opti-
mization. Math. Programming, 45(3, (Ser. B)):503–528, 1989.

[22] David McClosky, Eugene Charniak, and Mark Johnson. Automatic domain adaptation for
parsing. In Proceedings of Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages 28–36,
2010.

[23] Truc-Vien T. Nguyen, Alessandro Moschitti, and Giuseppe Riccardi. Convolution kernels on
constituent, dependency and sequential structures for relation extraction. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing, pages 1378–
1387, 2009.

54

[24] Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and Hai Leong Chieu. Semi-markov conditional
random field with high-order features. In ICML Workshop on Structured Sparsity: Learning
and Inference, 2011.

[25] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, October 2010.

[26] Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming Zhu, and Peide Qian. Exploiting
constituent dependencies for tree kernel-based semantic relation extraction. In Proceedings
of the 22nd International Conference on Computational Linguistics, pages 697–704, 2008.

[27] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[28] Benjamin Rosenfeld and Ronen Feldman. URES : An unsupervised Web relation extraction
system. In Proceedings of the 21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics, pages 667–674,
July 2006.

[29] Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields for informa-
tion extraction. In Advances in Neural Information Processing Systems 17, pages 1185–1192.
2005.

[30] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceed-
ings of the Twentieth International Conference on Machine Learning, pages 282–289, 2003.

[31] Yusuke Shinyama and Satoshi Sekine. Preemptive information extraction using unrestricted
relation discovery. In Proceedings of the Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics, pages 304–311,
June 2006.

[32] W. Tutte. Graph theory. Addison-Wesley, 1984.

[33] Vincent Van Asch and Walter Daelemans. Using domain similarity for performance estima-
tion. In Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language
Processing, pages 31–36, 2010.

[34] Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE 2005 mul-
tilingual training corpus. Linguistic Data Consortium, Philadelphia, 2006.

[35] Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan Wu. Conditional random fields with high-
order features for sequence labeling. In NIPS’09: Advances in Neural Information Processing
Systems 22, pages 1393–1400, Cambridge, MA, 2009. MIT Press.

[36] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel methods for relation
extraction. Journal of Machine Learning Research, 3:1083–1106, 2003.

55

[37] Min Zhang, Jie Zhang, and Jian Su. Exploring syntactic features for relation extraction using
a convolution tree kernel. In Proceedings of the Human Language Technology Conference,
pages 288–295, 2006.

[38] Shubin Zhao and Ralph Grishman. Extracting relations with integrated information using
kernel methods. In Proceedings of the 43rd Annual Meeting of the Association for Computa-
tional Linguistics, pages 419–426, 2005.

[39] GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Exploring various knowledge in relation
extraction. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, pages 427–434, 2005.

56

